当前位置:首页 > 工业控制 > 控制电路技术文库
[导读] 简介 在恶劣的电机应用环境中,需要鲁棒的数字隔离器。由于环境非常糟糕,应用要求能够抵御高压瞬变,防止数 据受扰,并且消除高压电压力对隔离器隔离寿命的影 响。此类应用的典型隔离解决方案是光

简介

在恶劣的电机应用环境中,需要鲁棒的数字隔离器。由于环境非常糟糕,应用要求能够抵御高压瞬变,防止数 据受扰,并且消除高压电压力对隔离器隔离寿命的影 响。此类应用的典型隔离解决方案是光耦合器,其内部 绝缘层很厚,可以承受高压。光耦合器的缺点是要使用 发光二极管(LED),其光强度会随着时间推移和温度变化 而降低,这就会带来设计和可靠性问题。新型且更鲁棒 的数字隔离器不使用LED,消除了可靠性问题,改善了绝 缘能力,可与光耦合器相媲美。这种数字隔离器的优势 是对高压瞬变的抗扰度更强,能够更好地满足电机控制 应用的要求。本文将详细说明此类新型数字隔离器的工 作原理,以及在上述应用中其先进的功能如何胜过光耦合器。

应用

根据应用的性能和功率水平,以及具体的控制和隔离方案,电 机驱动有各种各样的系统设计。图1所示为逆变器或低端电机驱动器常用的隔离通信框图。在该系统中,控制器电位与功率 级相同,通信接口被隔离,因为这通常是一个较低速度且较简单的接口。在此类系统中,功率逆变器可能具有低端栅极驱动 器,这些驱动器不需要隔离,因为其与电机控制模块共享同一 接地。高端驱动器可以隔离,但也可以使用电平转换之类的技术,尤其是当功率逆变器电压不是太高时。在此框图中,电机控制器不使用隔离,直接连到逆变器反馈。当功率水平较高时,使用这种架构会有局限性。开关信号在电机上产生的额外 噪声可能会淹没用来监测电机电流的反馈信号,进而可能引起电机失控。

图1. 隔离通信电机控制框图

对于较高性能驱动,例如工业电机和火车牵引电机中使用的大 型多相驱动,将会需要隔离控制和通信,如图2所示。在此系统 框图中,出于抗噪和提高通信速度的原因,控制和通信均位于 隔离栅的安全侧。因为电机控制模块位于隔离栅的安全侧,所以全部栅极驱动器都需要隔离。特定隔离电压和安全要求由具 体架构和隔离栅位置决定。

图2. 隔离控制和通信电机控制框图

在框图中,逆变器反馈用来帮助控制电机驱动,是电机控制最重要的方面之一。如图所示,逆变 器反馈连接到三相交流电机的两相中的电流测量节点iV和iW。在 隔离控制和通信系统图中,逆变器反馈必须跨隔离栅连接,故 而这里也需要隔离。在许多高功率电机应用中,架构会要求对 三相电机的高电压进行增强隔离,防止用户接触到高电压。此 类增强隔离应用具有极大的隔离电压要求,可能需要隔离器增大内部绝缘厚度(取决于材料)。

绝缘

隔离器的绝缘能力是指其在工作寿命中耐受高压的能力。在相 同的环境条件、电压瞬变和电压波形下,不同类型的隔离材料 具有不同的绝缘能力。光耦合器由于绝缘层厚,耐压能力强, 并且具有数十年的现场使用历史,成为业界惯用的经典高压隔 离器。光耦合器使用模塑料作为绝缘介质,塑料成型工艺可能 会在绝缘层中产生空隙,这会造成部分放电并引起绝缘失效。 由于这个原因,认证机构对绝缘高压测试的要求会包括部分放 电测试。与光耦合器不同,数字隔离器利用内部绝缘层作为原 边隔离栅,这些绝缘层是在界定明确且高度受控的半导体制造 工艺中生产的。这就消除了绝缘中的空隙,绝缘结构变得简单 得多,而且更为鲁棒。数字隔离器不使用LED,不存在LED可靠性问题。随着工艺改进,绝缘层厚度和组成越来越优化,数字隔离器也就更加鲁棒。某些数字隔离器使用薄层二氧化硅来产 生高介电强度绝缘,这已广泛用作半导体芯片上的绝缘体。二氧化硅绝缘的缺点是它与IC构成一个整体,IC受损时,隔离也 可能受损。使用聚酰亚胺绝缘可克服二氧化硅的这种限制,聚 酰亚胺半导体工艺已使用数十年,可帮助实现强健可靠的集成电路。聚酰亚胺内部绝缘属于后期处理,具有独立的完整性。 如果IC受损,独立的聚酰亚胺绝缘仍会完好无损。分多层制造 时,聚酰亚胺可用作电机驱动应用可能需要的增强绝缘。使用数字隔离器的工程师需要制造商提供全寿命数据,以证明器 件的时间、温度、湿度和电压性能能够应对取代光耦合器的挑战。

环境

电机控制应用的环境条件可能包括极端温度和湿度。以列车牵 引电机为例可以说明其中的一些极端情况。假设机车发动机在寒冷的冬日里牵引着一长串满载车厢在山区铁轨上行驶。环境温度可能低于?40°C,电机暴露在严寒的室外空气中,这时列车进入一条长长的隧道,由于发动机产生的热量,电机和发动机 周围的温度可能会迅速上升。电机及其绝缘体必须能在这种极 端温度下工作,而且能克服时间推移和温度变化带来的不利影 响。众所周知,光耦合器的性能会随着温度变化而降低,其内部LED产生的光量和检测器获得的输出信号会随着时间推移和温 度变化而减少。用作多通道隔离器时,光耦合器的通道间失配 会随着时间推移而增大。相比之下,数字隔离器不依赖于检测内部LED的信号,而是利用半导体IC工艺制造可靠的电路,由此 跨越隔离栅收发数字信号。

数字隔离器

数字隔离器结构和技术如图3中的示例框图所示。根据具体架构,数字隔离器响应输入逻辑电平或输入脉冲。可使用不同方 法编码和解码信号,以便跨越隔离栅收发逻辑数据。脉冲编码 技术如图4所示,其优点是当编码和解码脉冲之间的时间较长 时,低数据速率下消耗的电源电流较低。载波技术如图5所示, 即所谓开关键控(OOK),其在低数据速率时消耗的电流多于脉冲 编码方法。在较高数据速率(10 Mbps以上)时,OOK方法消耗的电 源电流少于脉冲编码技术。OOK技术相比于脉冲编码技术的优 势在于,OOK技术的逻辑更简单,故而传播延迟更低,最大数 据速率更高。脉冲编码技术的缺点是:如果外部噪声扰乱了输 出数据,这种状况会持续一微秒或更长时间,直至内部纠错逻 辑纠正错误或出现新的数据沿。对于电机控制应用,这可能意 味着栅极驱动器开关或反馈控制信号会在一定时间内失控,该 时间足够长,以至于开关电路或电机驱动可能受损。利用OOK 技术,如果电压瞬变扰乱数据,这种扰乱只会在噪声出现的短 暂时间内干扰数据输出,因为信号是被持久不变地驱动的。此 外,由于架构较简单,OOK数字隔离器可以设计得非常鲁棒, 不惧电机控制应用中的电气噪声。

图3. 数字隔离器框图

图4. 数字隔离器:脉冲编码数据架构

图5. 数字隔离器:开关键控数据架构

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭