当前位置:首页 > 智能硬件 > 人工智能AI
[导读] 2016年即将过去,这一年中相信诸位ICT业内人士听得最多的词就是AI(人工智能),无论是企业还是媒体,凡是和ICT着边的,都多少要冠以AI的字眼,否则就有OUT之嫌。但实际情况又如何呢?

2016年即将过去,这一年中相信诸位ICT业内人士听得最多的词就是AI(人工智能),无论是企业还是媒体,凡是和ICT着边的,都多少要冠以AI的字眼,否则就有OUT之嫌。但实际情况又如何呢?

所谓追根溯源。这里我们不妨回溯下今年比较重要或者说引起媒体和业内对于AI关注或者炒作的几个节点或者说是标志性事件,而对于这些标志性事件的解读和延展无疑会让我们看到AI的本质。

一、谷歌旗下AI公司DeepMind开发的Alpha Go神经网络在与世界围棋冠军李世石的“人机大战”中以绝对优势获胜,进而引发了业内对于AI的关注,之后AI开始频频出现在科技媒体和企业的报道中;

二、谷歌主打AI的无人驾驶汽车在路侧中出现首例事故和特斯拉的Autopilot(自动驾驶系统)频频出现的致死事故,尽管是负面的新闻,但还是激发了业内对于AI的关注,并以自动和无人驾驶汽车的热炒体现出来;

三、是亚马逊装有Alex语音识别技术的Echo音箱所谓的畅销以及有“互联网女皇”之称的 Mary Meeker 发布 2016 年度网络趋势报告时对于Echo以及AI的热捧和向好的预测;

四、美国总统大选中名为MogIA的人工智能系统成功预测出川普将成为美国总统;

五、是图形芯片公司或者说是其自己标榜为人工智能公司的英伟达股价的暴涨。

首先我们看下Alpha Go在围棋中战胜李世石究竟依靠的是什么?其实对于计算机与人类在棋类的博弈,早在1997年计算机首次击败了等级分排名世界第一的棋手。加里•卡斯帕罗夫以2.5:3.5 1胜2负3平)输给IBM的计算机程序“深蓝”,当时全球媒体和高科技界都惊呼标志着人工智能进入了新时代。

此前1988年,“深蓝”的上一代“深思”是第一个赢过国际象棋特级大师的电脑;1996年,“深蓝”成了第一个赢了国际象棋世界冠军的电脑。需要说明的是。深蓝重1270公斤,有32个大脑(微处理器),每秒钟可以计算2亿步,输入了一百多年来优秀棋手的对局两百多万局。

相比之下,AlphaGo最初通过模仿人类玩家,尝试匹配职业棋手的过往棋局,其数据库中约含3000万步棋,计算能力是当初“深蓝”的3万倍。这里我们看到的与“深蓝”相比最大的不同是AlphaGo在数据和计算能力上的优势。

在此也许有人会说AlphaGo赢在其庞大复杂的神经网络,但根据TIan yuandong和AlphaGo的论文,如果不做任何搜索(实际上考验的是计算能力),只是根据“棋感”(其实就是估值函数),CNN(神经网络)最好能达到KGS 3d的水平,也就是业余1段的水平。

而MCTS算法在没有Value Network的情况下在9x9的棋盘上能战胜人类高手,其实印证了AlphaGo在残局的实力是搜索(计算)起重要作用,也就是残局的计算能力碾压人类。但众所周知的事实是,计算机的计算能力远强于人类早已经是常识。

对此,微软亚洲研究院常务副院长芮勇在评价AlphaGo时曾对媒体表示:

“今天所有的人工智能几乎都是来自于人类过去的大数据,没有任何一个领域的能力源自自我意识,不管是象棋还是围棋,计算机都是从人类过去的棋谱中学习。其他领域也是类似,计算机在做图像识别的时候,也是从人类已有的大数据中学习了大量的图片。

在面对人类从来没有教过的问题时,计算机就会一窍不通。假如让 AlphaGo 去下跳棋,它就会完全傻掉。甚至说把围棋的棋盘稍作修改,从 19&TImes;19 的格子变成 21&TImes;21 的格子,AlphaGo 都招架不住,但是人类就没有问题。”

牛津英语词典对智能(intelligence)的定义为“获取并应用知识的能力”。以数字经济麻省理工学院(MIT)数字经济倡议的研究员兼AI意见领袖汤姆•达文波特(Tom Davenport)的话来说:“深度学习并不是深刻的学习。”

另一位专家奥伦•埃佐尼(Allen InsTItute of AI)也有类似意见:“AI只是简单的数学的大规模执行。”简单说,现在的AI实质只是一种强大的计算方式,并没有达到人脑那种堪称智能的方式。

而花了15年的时间在IBM研究院和IBM Watson团队工作的专家Michelle Zhou,作为该领域的专家,其将AI分为三个阶段。

第一个阶段是识别智能,在更加强大的计算机里运行的算法能从大量文本中识别模式和获取主题,甚至能从几个句子获取整个文章的意义;第二个阶段是认知智能,机器已经超越模式识别,而且开始从数据中做出推论;第三个阶段的实现要等到我们能创建像人类一样思考、行动的虚拟人类才行。

而我们现在只处于第一阶段,“识别智能”,也就是说,人们说的“人工智能”里面有很大一部分其实是数据分析,还是原来的套路或者说是“旧瓶装新酒”而已。

无独有偶,如果说上述AlphaGo最终还是依靠强大的计算能力体现出所谓AI优势的话,那么接下来我们要说的谷歌和特斯拉的自动和无人驾驶汽车则在简单的数据分析上都出现了偏差。

最典型的表现就是此前一直被吹捧的谷歌无人驾驶汽车,今年在时速低于2英里的情况下竟然发生了交通事故,且按责任划分当属谷歌。

如果我们拿当时谷歌无人驾驶汽车发生事故时的选择和结果与此次人机大战中的每步棋的选择与结果比较的话,对于AI(例如AlphaGo)来说,前者不知道要容易多少倍(谷歌无人驾驶系统比人类最大的优势就是预判对方的行为,并做出应对)。

可惜的是,谷歌无人驾驶汽车在这次事故中体现出了智能系统没能完全判断准确人类的行为,还做出了最令人失望,可能也是最有悖于人类驾驶员的选择,并最终导致事故的发生。

至于特斯拉,在今年屡屡发生事故之后,其升级了到了Autopilot 2.0系统,并发布了第二段自动驾驶技术的演示视频。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭