当前位置:首页 > 芯闻号 > 技术解析
[导读]为帮助大家增进对pic单片机的认识,本文将介绍如何基于pic单片机实现IC卡读写器。本文仅为上篇,剩余内容请翻阅下篇。

采用pic单片机,我们可以实现诸多应用。往期中,小编对pic单片机的诸多基础知识以及pic单片机的一些应用均有所介绍。为帮助大家增进对pic单片机的认识,本文将介绍如何基于pic单片机实现IC卡读写器。本文仅为上篇,剩余内容请翻阅下篇。

0. 引言

本设计的主要目的是介绍IC卡的数据存储技术和IC卡的数据通信,因而使用存储器卡。由于本设计中既可与IC卡进行串行同步通信,又要与上位机进行中行异步通信,因而需要选择一种同时具有这两种通信方式的单片机。因为PIC16F877不仅具有本设计所需要的两种通信方式,而且还具有运行速度快、低功耗、价格低等优点,所以选择PIC16F877单片机作为本设计的单片机。

图1是本设计的电路图,图中电源变换电路和发光二极管等指示电路没有画出。图中的二极管电路是单片机与IC卡通信数据线的保护电路。当数据线上的电压为负电压时,与地相连的二极管导通;当数据线上的电压大于+5V时,与+5V相连的二极管导通,从而保证数据线上的电压在0V~+5V之间,保护单片机和IC卡不受损坏。图中单片机的15脚和23脚分别与IC卡的输出引脚3和4相连。由于IC卡的输出电压为CMOS电平,而单片机能够正确的识别IC卡的输出信号,需要加上拉电阻。

1. SPI工作方式

串行外围设备接口SPI(Serial Peripheral Interface)总线技术是Motrola公司推出的一种同步串行接口。SPI总线是一种三线同步总线,因其硬件能力很强,与SPI有关的软件就相当简单,使CPU有更多的时间处理其它事务,因此得到广泛应用。

SPI模式允许8位数据同步发送和接收,支持SPI的所有四种方式。SPI模式传输数据需要四根信号线:串行数据输出(SDO)线、串行数据输入(SDI)线、串行时钟(SCK)和从选择(SS)。其中,从选择线只用于从属模式。

1.1 SPI主模式

由于控制时钟SCK的输出,主模式可以在任何时候开始传输数据。主模式通过软件协议控制从模式的数据输出。

在主模式中,一旦SSPUF寄存器写入,数据就会发送或接收。在接收数据时,SSPSR寄存器按照时钟速率移位,一旦接收到一个字节,数据就传输到SSPBUF,同时中断标志位和状态标志位置位。

时钟的极性可以通过编程改变。在主模式中,时钟SCK的频率可以设置为:fosc/4(即Tcy)、fosc/16(即4Tcy)、fosc/64(即16Tcy)和定时器2(TImer2)输出的二分频等四种。在芯片时钟为20MHz时,SCK的最大频率为5.0MHz。

在本设计中,使用的就是SPI主模式,由单片机控制时钟SCK的输出。当向IC卡中写数据时,随时可以发送数据;当读IC卡内的数据时,先要发送任意一个数据(此时IC卡不处于写入状态,不会接收该数据),给IC卡提供输出数据的时钟,然后再接收IC卡发出的数据。其时序如图2所示。(发送和接惦的数据均为6FH)

如果要连续发送数据,那么每次将数据送到SSPBUF寄存器后,都要判断是否已经发送完该数据,即判断PIR1寄存器的SSPIF位是否为1。如果SSPIF位为1,则表明数据已经发送完毕,可以继续发送下一个数据。但此时还不能立即发送下一个数据,因为SSPIF位必须在程序中由软件清零,只有将SSPIF位软件清零后,才能继续发送下一个数据。

1.2 SPI从模式

在SPI从模式,数据的发送和接收领先SCK引脚上输入的外时钟脉冲,当最后一位被锁存后,中断标志位SSPIF(PIR1的D3)位。在休眠模式,从模式仍可发送和接收数据,一旦接收到数据,芯片就从休眠中唤醒。如果采用SS控制的从模式,当SS引脚接到VDD时,SPI模式复位;如果 彩CKE=1控制的从模式,必须开放SS引脚控制。

在本设计中,由于IC卡是存储器卡,不能提供时钟信号,因此不能采用从模式,只能采用主模式,由单片机控制时钟信号。

单片机的SPI方式初始化程序如下:

MOVLW20H ;将20H送到累加器

MOVWF SSPCON ;将累加器中的数送到SSPCON寄存器

BSF STATUS,RP0 ;将定RAM区的第1页

BCF SSPSTAT,SMP ;将SSPSTAT寄存器的SMP位置0

BSF SSPSTAT,CKE ;将SSPSTAT寄存器的CLK位置1

BCF TRISC,3 ;将端口C的第3位设置为输出

BCF TRISC,5 ;将端口C的第5位设置为输出

其中,上述第1、2行程序是配置控制寄存器,将SPI方式配置为主控模式,时钟频率为单片机时钟频率的1/4,并将时钟的高电平设置为空闲状态。第3行程序为换页指令,将指针转到第1页。因为PIC16F877单片机的数据存储器是分页的,而所要操作的寄存器在第1页,因此要用换页指令将指针到第1页。第4、5行程序是配置状态寄存器,将SPI方式设置为数据输出时钟的中间采样,时钟SCK的上升沿触发。第6、7行程序则是将RC口的RC3和RC5设置为输出。

2. USART方式

通用同步异步接收发送模块(USART)是两个串行通信接口之一,USART又称为SCI(Serial CommunicaTIon Interface)。USART可以设置为全双工异步串行通信系统,这种方式可以与个人计算机PC或串行接口CRT等外围设备进行串行通信:也可以设置为半双工异步串行通信系统,与串行接口的A/D或D/A集成电路、串行EEPROM等器件连接。USART是二线制串行通信接口,它可以被定义如下三种工作方式:全双工异步方式、半双工同步主控方式、半双工同步从动方式。

为了把RC6和RC7分别设置成串行通信接口的发送/时钟(TX/CK)线和接收/数据(TX/DT)线,必须首先把SPEN位(TCSTAT的RD7)和方向寄存器TRISC的D7:D6置1。

USART功能模块含有两个8位可读/写的状态/控制寄存器,它们是发送状态/控制寄存器TXSTA和接收状态/控制寄存器TCSTA。

USART带有一个8位波特率发生器BRG(Baud Rato Generator),这个BRG支持USART的同步和异步工作方式。用SPBRG寄存器控制一个独立的8位定时器的周期。在异步方式下,发送状态/控制寄存器TXSTA的BRGH位(即D2)也被用来控制波特率(在同步方式下忽略BRGH位)。

向波特率寄存器SPBRG写入一个新的初值时,都会使BRG定时器复位清零,由此可以保证BRG不需要等到定时器溢出后就可以输出新的波特率。

对USART方式进行初始化的程序如下:

BSF STATUS,RP0 ;将指针指向数据存储器的第1页

MOVLW 0x19

MOVWF SPBRG ;设置波特率为9600

BCF STATUS,RP0 ;将指针指向数据存储器的第0页

CLRF RCSTA ;将接收控制和状态寄存器清零

BSF RCSTA,SPEN ;串口允许

CLRF PIR1 ;清除中断标志

BSF STATUS,RP0 ;将指针指向数据存储器的第1页

CLRF TXSTA ;将发送控制和状态寄存器清零

BSF TXSTA,BRGH ;设置为异步、高速波特率

BSF TXSTA,TXEN ;允许发送

BCF STATUS,RP0 ;将指针指向数据存储器的第0页

BSF RCSTA,CREN ;允许接收

初始化完成后,即可发送或接收数据。在发送或接收数据时,通过查询发送/接收中断标志位即可判断是否发送完一个数据/接收到一个数据。发送/接收中断标地不需要也不有用软件复位。

在异步串行发送的过程中,只要TXREG寄存器为空,中断标志TXIF就置位。因此,TXIF为1并不是发送完毕的标志,但仍可以用TXIF标志来判断。因此当TXREG为空时,将数据送入后,数据会保留在TXREG寄存器中,直到前一个数据从发送移位寄存器中移出,即前一个数据发送完。

以上便是此次小编带来的“pic单片机”相关内容,通过本文,希望大家对介绍的知识具备一定的了解,本文剩余内容参考下篇。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭