当前位置:首页 > 公众号精选 > 嵌入式案例Show
[导读]点击上方蓝字关注我哦~ 01 前言 上篇文章中介绍了ADC自身转换产生的误差,本篇文章来介绍下外部原因导致的ADC误差。 02  ADC环境导致的误差 参考电压噪声 由于ADC输出为模拟信号电压与参考电压之比,因此模拟参考上的任何噪声都会导致转换后 数字值的变化。

点击上方蓝字关注我哦~

01

前言


上篇文章中介绍了ADC自身转换产生的误差,本篇文章来介绍下外部原因导致的ADC误差。

02

 ADC环境导致的误差


参考电压噪声

由于ADC输出为模拟信号电压与参考电压之比,因此模拟参考上的任何噪声都会导致转换后 数字值的变化。在某些封装中,VDDA模拟电源被用作参考电压(VREF+),因此VDDA电源的质量会影响ADC误差。

 

例如,当模拟参考为3.3 V(VREF+ = VDDA)且信号输入为1 V时,转换后的结果为: 

(1/3.3)× 4095 = 0x4D9 

但是,当模拟参考中的峰间波动为40 mV时,转换值变为:(1/3.34)× 4095 = 0x4CA(VREF+在其峰值处)。 

 误差 = 0x4D9 – 0x4CA = 15 LSB 

SMPS(开关模式电源)通常内置快速切换功率晶体管。这会在输出中产生高频噪声。此切换噪声介于15 kHz至1 MHz之间。

参考电压/电源调节

电源调节对于ADC精度十分重要,因为转换结果是模拟输入电压与VREF+值之比。当连接到VDDA或VREF+时,如果这些输入上的负载及其输出阻抗导致电源输出下降,将在转换结果中产生误差。

其中N是ADC分辨率(在本例中,N = 12)。如果参考电压变化,数字结果也将发生变化。


例如: 如果所用电源的参考电压为3.3 V且VAIN = 1 V,则数字输出为:

如果电源提供的电压等于3.292 V(在其输出连接到VREF+后),则:

压降产生的误差为:0x4DC – 0x4D9 = 3 LSB。

外部参考电压参数

当使用外部参考电压源(VREF+引脚上)时,该外部参考源有一些重要参数。必须考虑三个 参考电压规格:温度漂移、电压噪声和长期稳定性。

模拟输入信号噪声

在采样时间内,小而高频率的信号变化可导致较大转换误差。此噪声由电气设备(例如电 机、发动机点火、电源线)生成。它增加了不需要的信号,因此会影响源信号(例如传感 器)。这样一来,导致ADC转换结果不准确。

最大输入信号幅度的ADC动态范围匹配不佳

为获得最高ADC转换精度,ADC动态范围必须与待转换信号的最大幅度相匹配。我们假设待转换信号在0 V与2.5 V之间变化,并且VREF+等于3.3 V。ADC转换的最大信号值为3102 (2.5 V),如下图所示。在本例中,有993个未使用转换(4095 – 3102 = 993)。这意味着转换后信号精度下降。

模拟信号源电阻的影响

在源和引脚之间的模拟信号源的阻抗或串联电阻(RAIN),可能会因为流入引脚的电流而导致其上的电压降。通过电阻为RADC的开关控制内部采样电容(CADC)的充电。添加了源电阻(RADC)后,保持电容充满电所需的时间延长。下图所示为模拟信号源电阻的影响

CADC的有效充电受RADC+RAIN控制,因此,充电时间常量为tc =(RADC+RAIN)× CADC。如果采样时间短于通过RADC + RAIN将CADC充满电所需的时间(ts < tc),则ADC转换的数字值小于实际值。

PCB源电容和寄生电容的影响

在转换模拟信号时,必须考虑源电容和模拟输入引脚上的寄生电容。源电阻和电容构成RC网络。此外,ADC转换结果可能不准确,除非将外部电容(CAIN + Cp)完全充满至输入电压值。(CAIN + Cp)值越大,源频率越有限。外部源电容和寄生电容分别用CAIN和Cp表示。

注入电流的影响

任何模拟引脚(或紧邻的数字输入引脚)上的负注入电流都可能在ADC输入中产生泄漏电流。最坏情况是相邻模拟通道。当VAIN < VSS时,产生负注入电流,导致电流从I/O引脚流出。

温度影响

温度对ADC精度有重要影响。它主要产生两种重要误差:偏移误差漂移和增益误差漂移。这些误差可以在微控制器固件中得到补偿。

I/O引脚串扰

由于I/O之间的电容耦合,切换I/O可能会在ADC的模拟输入中产生一些噪声。彼此距离很近或交叉的PCB走线可能会产生串扰。 

内部切换数字信号和I/O会产生高频噪声。由于电流浪涌,切换高灌电流I/O可能导致电源 电压小幅下降。PCB上与模拟输入走线交叉的数字走线可能影响模拟信号。

EMI产生的噪声

邻近电路产生的电磁辐射可能在模拟信号中产生高频噪声,此时PCB走线相当于天线。

/ The End /

文档来源:how-to-get-the-best-adc-accuracy-in-stm32-microcontrollers-stmicroelectronics.pdf

推荐阅读


ADC误差产生的原因(一)


STM32 ADC内部原理

扫码关注我们

看更多嵌入式案例


喜欢本篇内容请给我们点赞、在看

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

ADC(Analog to Digital Converter, 模数转换器), 用于实现模拟信号向数字信号的转换。A/D转换的作用是将时间连续、幅值也连续的模拟信号(电信号)转换为时间离散、幅值也离散的数字信号(二进制...

关键字: ADC 转换原理 模拟信号

一直以来,ADC模数转换器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来模数转换器的相关介绍,详细内容请看下文。

关键字: ADC 模数转换器

本款ADC具有高通道密度优势,可使CT模组达到更小像素,使CT扫描仪的成像质量达到较高的分辨率。

关键字: ADC

这款测试芯片是业界首款采用12纳米FinFet(FF)技术为音频IP提供完整解决方案的产品。该芯片完美结合了高性能、低功耗和优化的占板面积,为电池供电应用提供卓越的音质与功能。这款专用测试芯片通过加快产品上市进程、提供同...

关键字: 测试芯片 半导体 ADC

2024年1月23日,鼎阳科技正式发布8GHz带宽高分辨率示波器,树立了国产高分辨率示波器的新标杆。此次发布的示波器为SDS7000A系列推出的新型号SDS7804A,具备12-bit高精度ADC,1Gpts存储深度,支...

关键字: 示波器 ADC 第三代半导体

本文介绍新一代多路复用模数转换器(ADC)如何提供更多通道、更深入的信号链集成、灵活性和鲁棒性优势,以简化复杂系统设计,从而支持在先进工厂和生产设施中实现自动化和过程控制。

关键字: ADC RC低通滤波器 鲁棒性

新厂房将提供从抗体中间体到偶联原液及制剂的一站式临床和商业化生产服务 产能翻番,为需求激增的全球偶联药行业提供更强大赋能 无锡2023年9月20日 /美通社/ -- 全球领先的生物偶联药合同研究、开发和生...

关键字: ADC 全自动 新加坡 自动化系统

公司工业电子产品有着广阔的市场空间,应用于工业测量和信号调理的SmartAnalog系列高精度SOC芯片已正式发布,正在拓展品牌工业客户的导入。

关键字: SAR ADC SmartAnalog

SAR ADC是一个非常常见的拓扑结构,这是一种在速度、分辨率和功率之间提供了很好平衡的折衷方案。SAR ADC的一个关键优势是几乎没有延迟。因此在很多应用领域都能看到使用SAR ADC。

关键字: SAR ADC 拓扑结构

高精度ADC即高精度模数转换器,是一种能够将输入模拟信号转换为数字信号的芯片,在多种工业、医疗和科研领域都有广泛应用。高精度ADC的主要特点是能够提供高分辨率、高速度和高精度的模数转换,并且具有很强的抗噪能力和线性度。

关键字: ADC 高精度ADC 模数转换
关闭
关闭