当前位置:首页 > 芯闻号 > 厂商动态
[导读]9月1日,蔡司今天发布高级重构工具箱,用于行业领先的Xradia Versia系列无损成像的 3D X射线显微镜(XRM)以及Xradia Context 3D X射线微焦点计算断层扫描(microCT)系统。借助内部算法、自主开发的工作流程以及性能强大的工作站,高级重构工具箱能够显著提高3D图像重构时的产出和图像质量,而3D图像重构是3D XRM应用于失效分析(FA)的重要一环。该工具箱可缩短分析时间、提高失效分析准确率,甚至产生可应用于半导体高级封装技术的新型应用和工作流程。

9月1日,蔡司今天发布高级重构工具箱,用于行业领先的Xradia Versia系列无损成像的 3D X射线显微镜(XRM)以及Xradia Context 3D X射线微焦点计算断层扫描(microCT)系统。借助内部算法、自主开发的工作流程以及性能强大的工作站,高级重构工具箱能够显著提高3D图像重构时的产出和图像质量,而3D图像重构是3D XRM应用于失效分析(FA)的重要一环。该工具箱可缩短分析时间、提高失效分析准确率,甚至产生可应用于半导体高级封装技术的新型应用和工作流程。


蔡司(ZEISS)推出应用于3D X射线无损成像解决方案的高级智能化重构技术,以实现更高效的半导体封装失效分析

蔡司高级重构工具箱能够显著提高3D图像重构时的产出和图像质量

高级重构工具箱包含一个工作站和两个模块:用于迭代重构的蔡司OptiRecon,以及用于显微镜的首个商业化深度学习重构技术DeepRecon。

应时而生的新型重构技术

3D XRM可对2D X射线投影图像中隐藏的特性进行独特的可视化处理,目前已成为行业通用的一项缺陷成像技术,有助于更快地发现造成封装故障的根本原因。在封装失效分析中,快速获得结果和高成功率都很重要。因此,在保证图像质量的同时缩短成像时间意义重大。通常,使样品在光路中旋转,从不同角度捕捉一系列2D X射线投影图像后,可使用Feldkamp-Davis-Kress (FDK) 滤波反投影算法重建3D数据集。FDK技术为了提高产出而减少图像曝光次数或投影次数时,经常会造成图像质量下降。

蔡司的新型高级重构工具箱推出两个全新的高级重构引擎OptiRecon和DeepRecon。它们能通过提高半导体先进封装失效分析和结构分析的衬度噪音比,缩短扫描时间的同时保持甚至提高图像质量。除了应用于电子和半导体行业的封装之外,高级重构工具箱还可用于很多其他领域,包括材料研究、生命科学和高级电池研发。

韩国东新大学J.H. Shim教授(前电子行业首席研究员)表示:“只有蔡司才能在如此短的扫描时间内以如此少的投影次数实现聚合物隔膜的可视化。对工业电池客户而言,OptiRecon和DeepRecon堪称颇具吸引力的应用。”

OptiRecon适用于各种不同的样品和工作流程

OptiRecon是各种半导体封装的理想选择,适用于研发和失效分析。它使用了迭代重构技术。这项技术通过多层迭代来计算真实投影和模拟投影之间的差异,直至实现收敛。与FDK技术相比,OptiRecon大幅度减少了投影次数和缩短了成像时间,无疑是最佳的扫描策略。在保持或提高图像质量的前提下,它可使半导体封装的扫描时间最多缩短两倍。在提高生产效率后可实现多方面效益:扩大感兴趣区域、在一个班次内便可完成分析工作、减少样品的辐射剂量。在与FDK的通量相当的情况下,OptiRecon可提高图像质量,从而实现更优的衬度噪音比,而且能提高缺陷可视化并缓解分析师的眼部疲劳。OptiRecon采用简单易用并能优化重构参数的界面,以及高级高性能离线工作站,以实现高速、高效的重构。


蔡司(ZEISS)推出应用于3D X射线无损成像解决方案的高级智能化重构技术,以实现更高效的半导体封装失效分析

用于迭代重构的蔡司OptiRecon

DeepRecon适用于重复性的样品和工作流程

DeepRecon模块利用定制训练的神经网络,在需要对相同或相似样品进行重复性分析时,提高失效分析和结构分析的通量和成功率。蔡司针对特定类别的样品,提供定制神经网络并经优化后满足客户的需要。相比FDK,DeepRecon可在保持或提高图像质量的情况下,使某些特定类别样品的扫描时间最大缩短四倍,而且在扫描时间相同时,实现低噪音、高质量的图像。在工作流程中应用DeepRecon网路模型是一件极其轻松的事情。工具操作员只需在下拉菜单中选择蔡司开发的其中一种网络模型即可。


蔡司(ZEISS)推出应用于3D X射线无损成像解决方案的高级智能化重构技术,以实现更高效的半导体封装失效分析

用于显微镜的首个商业化深度学习重构技术DeepRecon

蔡司制程控制解决方案部门总裁Stefan Preuss博士说:“自去年上市以来,蔡司的Xradia 600系列Versa凭借其在封装失效分析中出色的分辨率、图像质量以及产出,在电子及半导体封装产业中发展势头强劲。由于我们的客户在先进封装的失效分析中不断面临全新的挑战,因此蔡司在通过持续创新,使我们的产品拥有全新的功能和更强大的性能,以迎接那些迎面而来的挑战。我们开发的高级重构工具箱便是一个很好的例子。该工具箱包含OptiRecon和DeepRecon两个模块,能显著提高世界一流成像解决方案的产出和图像质量,使我们的客户比以往任何时候都能快速排除故障,实现更高的封装产量。”

蔡司高级重构工具箱以及可选配的OptiRecon和DeepRecon模块可直接在现有的蔡司Xradia Versa系统和Xradia Context microCT系统上进行升级,也可对未来的Versa 和 Context microCT系统进行升级。

关于蔡司

蔡司是全球光学和光电领域的先锋。上个财年度,蔡司集团旗下四个部门的总收入超过64亿欧元,包括半导体制造技术、工业质量与研究、医疗技术、消费市场(截止:2019年9月30日)。

蔡司为客户开发、生产和分销用于工业测量与质量控制的创新解决方案,用于生命科学和材料研究的显微镜解决方案,以及用于眼科和显微外科诊断与治疗的医疗技术解决方案。在半导体行业,“蔡司”已成为世界优秀的光学光刻技术的代名词,该技术被芯片行业用于制造半导体元件。眼镜镜片、照相机镜片和双筒望远镜等引领行业潮流的蔡司产品正在全球市场热销。

凭借与数字化、医疗保健和智能生产等未来增长领域相结合的投资组合,以及强大的品牌,蔡司正在通过其各种解决方案,塑造科技未来,推进光学世界及相关领域的不断前进。该公司在研发方面的重大、可持续投资为蔡司技术和市场成功保持领先地位和持续扩张奠定了基础。

蔡司拥有31,000多名员工,活跃于全球近50个国家,拥有约60家销售和服务公司、30家生产基地和25家开发基地。公司于1846年创办于耶拿(Jena),总部位于德国奥博科亨。卡尔·蔡司基金会(Carl Zeiss Foundation)是德国最大的基金会之一,致力于促进科学发展,是控股公司卡尔·蔡司股份公司的唯一所有者。

半导体制造技术

依托丰富的产品组合和深厚的专业实力,蔡司的半导体技术部门涵盖了微芯片生产过程中的全部重要工艺,其产品包括半导体光学,即光学光刻技术,以及半导体制程中的光掩模版系统及工艺控制解决方案。借助于蔡司领先的技术,微芯片正变得更小巧、更强大、更节能、更低廉。随着这种不断的技术进步在电子领域得到广泛运用,全球的科技、电子、通讯、娱乐、移动及能源等行业获得了迅猛发展。半导体技术部门的总部位于奥博科亨,业务遍布德国的耶拿、罗斯多夫和韦茨拉尔,以及以色列的巴列夫、美国加州普莱森顿和马萨诸塞州皮博迪。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭