当前位置:首页 > 通信技术 > 通信设计应用
[导读]   数据的无线传输有多种方法。从简单的指令和控制方案,如遥控无钥匙进入(RKE)和车库开门装置到无线局域网(WLAN)等等。本文旨在介绍各种可用方案及其中存在的必须应对的局限性, 以期为设计师提

  数据的无线传输有多种方法。从简单的指令和控制方案,如遥控无钥匙进入(RKE)和车库开门装置到无线局域网(WLAN)等等。本文旨在介绍各种可用方案及其中存在的必须应对的局限性, 以期为设计师提供一些实用信息,供其在为工业应用选择无线网络时使用。

  汽车等设备上用来锁定和打开车门的遥控无钥匙进入(RKE)系统就是简单的指令和控制应用的一个非常典型的例子。在遥控无钥匙进入(RKE)应用中,指令通过遥控钥匙发送至汽车信号接收器。适当地接收到指令后,汽车即会相应锁定或解锁。

  类似汽车中安装的接收器理论上可以接收任何类似型号的遥控钥匙发送的数据包。然而,汽车只能接收专门为其指定的遥控钥匙发送的指令。滚动码生成器和安全加密等协议通常用于从遥控钥匙将唯一的ID传输至汽车。这样一来,您的遥控钥匙就无法打开您朋友的类似型号的汽车,反之亦然,从而确保汽车的安全。

  对于汽车遥控无钥匙进入(RKE),遥控钥匙操作人员通常会听到锁具被锁定的声音。如果没有听到“咔嚓”声,操作员只需再次按下按钮,从而通过人机交互完成遥控无钥匙进入 (RKE) 应用中的反馈环节。如果没有听到汽车解锁的声音,就需要再次按下按钮,直至听到解锁声。

  

  图1:遥控无钥匙进入(RKE)应用

  很多工业应用都需要传输指令和控制数据。从传感器发送将温度指示到主机就是一个例子。工业应用和遥控无钥匙进入(PKE)之间的差异是:工业应用中无需人员介入判断是否真正收到了温度指示。

  需要确认数据的接收意味着存在双向网络。随着融入更多致动器、开关和电机需求的出现,系统的复杂度会立即增加。因此,由于应用中需要确认数据是否已实际送达,工业网络通常不会使用简单的单向遥控无钥匙进入(RKE)网络。

  工业无线解决方案的每个节点上基本都有一个微控制器。微控制器会通过接口连接至温度传感器和致动器等实体设备,来读取或写入它们的数据。同时,微控制器还需负责管理射频网络协议。协议的选择取决于多种因素。选择最佳解决方案的因素包括:数据传输范围、数据传输速率、功耗和网络协议栈的复杂度。

  ZigBee 最近受到了大量关注。作为标准解决方案,ZigBee或802.15.4最初被视为许多低功耗、低数据传输速率无线通信应用的最佳选择。但是,它真的适用于所有应用吗?当然不是。在有些情况下,802.11 WLAN非常适用于高数据传输速率的数据传输。同样,有些应用需要更长的数据传输范围和电池寿命。简言之,具体架构决定着特定应用所需的无线网络类型。

  在无线网络中,如果数据传输速率增大,系统资源也会相应增多。以802.11 WLAN为例,由于其实现网络通信所需的功耗和代码大小,这些协议不能用于大多数嵌入式应用。典型的 802.11 WLAN节点所需的程序内存高达1MB,还需要功能更强大的处理器来使单节点正常运行。

  802.11无线电附加系统处理器的功耗使其非常适用于工业网络中的计算应用和信息回程,但便携式节点需要大量功耗和系统资源才能使802.11 WLAN的节点正常运行。功耗大、代码长且昂贵的802.11 WLAN不适用于温度、压力和致动的远程监控等任务。

  ZigBee 协议相对较轻巧,它的代码空间为32-70KB,数据传输范围适中,为10-100米。这些特点让ZigBee成为了工业网络的首选。ZigBee的一大优点是其“网状”能力。网状网络允许节点间的信息传输;这样一来,就算任何节点出现故障或掉线,信息也能顺利传输至目的地。网状网络的数据包处理非常复杂,因此,所需的程序内存较大。图2给出了各无线网络的相应代码大小。

  

  图2:各射频网络所需的系统资源

  蓝牙是工业应用中常常会谈到的另一种常见方案。快速浏览上图就能发现,蓝牙的数据传输范围较短,代码较大,再加上蓝牙属于点对点通信方案,就会立即判断出它不适用于工业射频应用。

  那么,专线网络如何?专线网络指不按特定标准运行的网络。通常采用915MHz ISM频段(工业、科学和医疗)和2.4GHz频段。有时,315MHz或433MHz的频段也被用于指令和控制类应用。当地的监管要求通常会指定可用的频率。

  在射频信号通过空气传输的过程中,其功率水平会与已传输的距离成反比、与频率成正比而降低。自由空间路径损耗公式如下所示,对应的各频率的路径损耗与距离的关系如图3所示。

  

  设d = 距离(米)

  l=波长(米)

  
 

  因此,在自由空间内传输距离达到 100 米时,路径损耗如下:

  2.4GHz,80dB

  915MHz,72dB(比运行频率为2.4GHz时路径损耗小8dB)

  433MHz,65dB(比运行频率为2.4GHz时路径损耗小15dB)

  在射频系统中,接收到的信号等于发射功率加系统天线增益再减去路径损耗,如下面的公式所示。

  

  设R = 接收到的信号强度

  Pt= 发射功率

  Gant = 天线增益

  L = 路径损耗

  如果一个系统的输出功率为 10dBm,系统天线增益为 0,在理想环境下的自由空间为 100 米,那么,它接收到的信号强度将为:

  2.4GHz,-70dB

  915MHz,-62dB

  433MHz,-55dB

  这表示,运行频率为2.4GHz的系统接收器的灵敏度至少应达到-70dB,才能在理想的自由空间环境下检测到信号。

  除了自由空间路径损耗以外,传输信号也会因建筑物、植被和其它物体而衰减。接收器试图对输入射频信号进行解码时也会受到多路径和信号散射等其它因素的影响。哈他模型 (Hata Model) 等其它路径损耗考虑了天线高出地面的距离和市区环境的影响带来的损耗,这些模型能够更真实地反映路径损耗。大多数应用中的实际路径损耗值比图3中给出的路径损耗值大得多。有趣的是,路径损耗会随着频率的增大而增大。这就是运行频率为 2.4GHz 的系统比运行频率为915MHz或433MHz 的系统的数据传输范围小的原因。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭