当前位置:首页 > 通信技术 > 光通信
[导读]   随着互联网骨干带宽以每年约50%的速度增长,以及宽带用户(IPTV、视频点播及3G业务等)和带宽饥渴型应用的增加,为业务汇聚与核心网络应用提供100GE已成为网络运营商、大型互连网业务提供商

  随着互联网骨干带宽以每年约50%的速度增长,以及宽带用户(IPTV、视频点播及3G业务等)和带宽饥渴型应用的增加,为业务汇聚与核心网络应用提供100GE已成为网络运营商、大型互连网业务提供商的迫切需要。40G传输系统已不能满足当前几何式增长的带宽需求,目前部分数据流量繁忙的骨干网上业已呈现出传送带宽紧缺的趋势。100G传输技术成为众望所归的解决方案 ,正逐步规模商用。

  波分系统从2.5G到10G,从10G到40G,一直面临着一系列的物理限制。线路速率再次提升到100G,这些物理限制因素仍然存在,产生的传输损伤也更为严重。而100G技术的发展,主要是不断地克服这些因素的影响。

  一、100G传输系统面临的挑战

  按照传统波分系统的发展模式, 100G传输系统将面临更高的系统OSNR、更高的色散容限和更强的非线性效应影响等诸多挑战。

  1、要求更高的系统OSNR

  波分传输系统采用光放大器来克服光纤损耗,延长无电中继传输距离,光放大器在对光信号进行功率放大的同时也引入了噪声信号,另一方面,在波特率提升时,光接收机的带宽也需要随之而线性增加,而更宽的接收机带宽将使得更高功率的噪声进入接收机的判决电路,从而会造成误码率的增加,这样就必须要求OSNR容限提升。

  2、要求更高的色散容限

  光信号在光纤中的色散效应来自调制光信号的光谱中的不同频率成分在光纤中的传输速度不同,从而导致承载业务信号的一串光脉冲发生畸变,导致相邻光脉冲之间的码间干扰,从而产生误码。传输光信号的色散容限与光信号的光谱宽度成反比,同时和光信号的时域宽度(脉冲周期)成正比。对于100G信号,由于其光信号的波特率提升,其光谱宽度会相应提升,其时域波形周期也会随之降低,如果100G同样采用传统的OOK/ASK调制方法(二进制振幅键控),则其色散容限将非常小,现有的DCM补偿方式已经完全不能满足要求。对于100G传输,色散容限问题已经成为严重的问题,而传统的光学色散补偿的方法已经不能克服色散容限降低带来的危害,必须采用更新的补偿措施,才能使100G传输成为可能。

  同色度色散(CD)一样,偏振模色散(PMD)也同样限制着高速波分系统的传输能力。偏振模色散(PMD)是指对相同频率的光,只要其偏振模式不同,光纤也会导致其传播速度不同,偏振模色散会导致光纤传输系统的码间干扰(ISI),进而引起误码和系统代价。

  如果100G同样采用传统的OOK/ASK调制方法(二进制振幅键控),其PMD容限不足1ps,无法达到工程预算要求。在100G传输系统中,PMD容限也被认为是一个非常严重的问题,常规的强度调制-直接检测(IM-DD)码型调制及接收方式无法满足系统设计要求,在技术上必须寻找新的解决方案。

  3、光纤非线性效应增强

  光纤非线性效应的强弱与入纤光功率、光信号的光谱宽度、调制码型特性、光纤色散系数以及跨段数目均有关系,光信号的调制速率越高,对光纤非线性效应的忍耐程度越低。而一些特殊的码型调制技术技术,如相位调制、RZ码型调制等,有利于增强传输码型对光纤非线性效应的抵抗能力。100G传输系统,如果要克服由于调制速率提升而带来的更差的非线性忍耐度,就必须从调制技术上寻找新突破。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭