当前位置:首页 > > 功放技术
[导读] 前面我们为大家带来了模拟电子学习中经常遇到的系列疑难问题的总结:模拟电子疑难问题解惑系列(一):半导体、放大器知多少? 模拟电子疑难问题解惑系列(二):模拟电路设计问题

前面我们为大家带来了模拟电子学习中经常遇到的系列疑难问题的总结:模拟电子疑难问题解惑系列(一):半导体、放大器知多少? 模拟电子疑难问题解惑系列(二):模拟电路设计问题须知,今天为大家带来了模拟电子问题解惑系列三,供大家学习。

101、目前使用最广泛的功率放大电路是什么?

答:目前使用最广泛的功率放大电路是OTL和OCL电路。

102、什么是交越失真?

答:只有当|Ui|>Uon时,三极管才导通,当输入信号Ui在过零前后,输出信号便会出现失真,这种失真称为交越失真。

103、如何消除交越失真?

答:为了消除交越失真,应当设置合适的静态工作点,使两只晶体管均工作在临界导通或微导通状态。

104、对于OCL功率放大电路,在已知电源电压和负载电阻的情况下,如何估算出电路的最大输出功率?

答:OCL功率放大电路的最大输出功率:

105、对于OCL功率放大电路,在已知电源电压和负载电阻的情况下,如何估算出电路的电源提供的功率?

答:OCL功率放大电路的电源提供的功率:

106、对于OTL功率放大电路,在已知电源电压和负载电阻的情况下,如何估算出电路的最大输出功率?

答:OTL功率放大电路的最大输出功率:

107、对于OTL功率放大电路,在已知电源电压和负载电阻的情况下,如何估算出电路的电源提供的功率?

答:OTL功率放大电路的电源提供的功率:

108、在选择功率放大电路中的晶体管时,应当特别注意的参数有哪些?

答:在选择功率放大电路中的晶体管时,应当特别注意的参数有:晶体管所能承受的最大管压降、集电极最大电流和最大功耗。

109、功率放大电路的最大不失真的输出电压是多少?

答:功率放大电路的最大不失真的输出电压幅值等于电源电压减去晶体管的饱和压降,即:Uom=Vcc-UCES。

110、什么是功率放大电路的最大输出功率?

答:功率放大电路的最大输出功率是指在输入电压为正弦波时,输出基本不失真情况下,负载上可能获得的最大交流功率。即:Pom=Uo&TImes;Io。

111、什么是功率放大电路的转换效率?

答:功率放大电路的转换效率是指最大输出功率与电源所提供的功率之比。即:η=Pom/Pv。

112、请简述分析功率放大电路的步骤。

答:由于功率放大电路的输入信号幅值较大,分析时应采用图解法。一般按以下步骤分析:⑴求出功率放大电路负载上可能获得的交流电压的幅值Uom;⑵求出电路的最大输出功率Pom;⑶求出电源提供的直流平均功率Pv;⑷求出转换效率η。

113、什么是功放管的一次击穿?

答:功放管的一次击穿是指,当晶体管的CE间电压增大到一定数值时,集电极电流骤然增大的现象。

114、什么是功放管的二次击穿?

答:功放管的二次击穿是指,当晶体管一次击穿后,若不限制集电极电流,晶体管的工作点将以高速度变化,从而使电流猛增而管压降减小的现象。

115、在功率放大电路中,怎样选择晶体管?

答:选择晶体管时,应使极限参数UCEO>2Vcc;ICM>Vcc/RL;PCM>0.2Pom。

116、什么时候晶体管耗散功率最大?

答:当Uom=2Vcc/π≈0.6Vcc时,PT = PTMAX,即晶体管耗散功率最大。

117、什么是零点漂移现象?

答:输入电压为零而输出电压不为零且缓慢变化的现象,称为零点漂移现象。

118、什么是温度漂移?

答:当输入电压为零,由温度变化所引起的半导体器件参数的变化而使输出电压不为零且缓慢变化的现象,称为温度漂移。它使产生零点漂移的主要原因。

119、抑制零点漂移的方法有哪些?

答:抑制零点漂移的方法有:⑴在电路中引入直流负反馈;⑵采用温度补偿的方法,利用热敏元件来抵消放大管的变化;⑶采用“差动放大电路”。

120、直接耦合放大电路的特殊问题是什么?如何解决?

答:直接耦合放大电路的特殊问题是存在零点漂移现象。解决办法是采用差动放大电路。

121、 差动放大电路有什么功能?

答:差动放大电路可以放大差模信号,抑制共模信号。

122、 共模信号和零点漂移以及温度漂移有什么联系?

答:温度漂移是引起零点漂移的主要原因,所以一般讲的零点漂移就是指温度漂移。温度的变化对差动放大电路来说,实际上就相当于一个共模信号。

123、 差动放大电路的电路结构有什么特点?

答:差动放大电路有两只三极管组成,电路中所有元器件参数都是对称的。

124、 什么是差模信号?

答:差模信号是两个输入信号之差。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭