当前位置:首页 > 公众号精选 > 嵌入式云IOT技术圈
[导读]❝ 本文是博主在学习OTA时,up主阿正推荐学习的文章,原作者leafguo,写的非常简洁明了,在获得授权后整理发布,可以在文末点击阅读原文跳转到原文章。 ❞ 简介 本文主要讲解在线升级(OTA)的基础知识, 主要是针对IAP OTA从原理分析, 分区划分, 到代码编写和实验

本文是博主在学习OTA时,up主阿正推荐学习的文章,原作者leafguo,写的非常简洁明了,在获得授权后整理发布,可以在文末点击阅读原文跳转到原文章。

简介

本文主要讲解在线升级(OTA)的基础知识, 主要是针对IAP OTA原理分析分区划分, 到代码编写实验验证等过程阐述这一过程. 帮助大家加深对OTA的认识.

1. OTA基础知识

什么是BootLoader?

BootLoader可以理解成是引导程序, 它的作用是启动正式的App应用程序. 换言之, BootLoader是一个程序, App也是一个程序,  BootLoader程序是用于启动App程序的.

STM32中的程序在哪儿?

正常情况下, 我们写的程序都是放在STM32片内Flash中(暂不考虑外扩Flash). 我们写的代码最终会变成二进制文件, 放进Flash中 感兴趣的话可以在Keil>>>Debug>>>Memory中查看, 右边Memory窗口存储的就是代码

接下来就可以进入正题了.

进行分区

既然我们写的程序都会变成二进制文件存放到Flash中, 那么我们就可以进一步对我们程序进行分区. 我使用的是F103RB-NUCLEO开发板,他的Flash一共128页, 每页1K.见下图:

以它为例, 我将它分为三个区.BootLoader区、 App1区、 App2区(备份区)具体划分如下图:

  • BootLoader区存放启动代码
  • App1区存放应用代码
  • App2区存放暂存的升级代码

总体流程图

  • 先执行 BootLoader程序, 先去检查 APP2区有没有程序, 如果有就将App2区(备份区)的程序拷贝到 App1区, 然后再跳转去执行 App1的程序.
  • 然后执行 App1程序, 因为 BootLoaderApp1这两个程序的向量表不一样, 所以跳转到 App1之后第一步是先去更改程序的向量表. 然后再去执行其他的应用程序.
  • 在应用程序里面会加入程序升级的部分, 这部分主要工作是拿到升级程序, 然后将他们放到 App2区(备份区), 以便下次启动的时候通过 BootLoader更新 App1的程序. 流程图如下图所示:

2. BootLoader的编写

本节主要讲解在线升级(OTA)的BooLoader的编写,我将以我例程的BootLoader为例, 讲解BootLoader(文末会提供免费的代码下载链接),其他的大体上原理都差不多。

流程图分析

以我例程的BootLoader为例:

我将App2区的最后一个字节(0x0801FFFC)用来表示App2区是否有升级程序, STM32在擦除之后Flash的数据存放的都是0xFFFFFFFF, 如果有, 我们将这个地址存放0xAAAAAAAA. 具体的流程图见下图所示

程序编写和分析

所需STM32的资源有:

  • 发送USART数据和printf重定向
  • Flash的读写
  • 程序跳转指令,可以参考如下代码:
/* 采用汇编设置栈的值 */
__asm void MSR_MSP (uint32_t ulAddr)
{
MSR MSP, r0 //设置Main Stack的值
BX r14
}


/* 程序跳转函数 */
typedef void (*Jump_Fun)(void);
void IAP_ExecuteApp (uint32_t App_Addr)
{
Jump_Fun JumpToApp;

if ( ( ( * ( __IO uint32_t * ) App_Addr ) & 0x2FFE0000 ) == 0x20000000 ) //检查栈顶地址是否合法.
{
JumpToApp = (Jump_Fun) * ( __IO uint32_t *)(App_Addr + 4); //用户代码区第二个字为程序开始地址(复位地址)
MSR_MSP( * ( __IO uint32_t * ) App_Addr ); //初始化APP堆栈指针(用户代码区的第一个字用于存放栈顶地址)
JumpToApp(); //跳转到APP.
}
}
  • 在需要跳转的地方执行这个函数就可以了 IAP_ExecuteApp(Application_1_Addr);
  • 其他的代码请参考 BootLoader源代码

3. APP的编写

本节主要讲解在线升级(OTA)的App1的编写以及整个流程的说明,我将以我例程的App为例, 采用Ymodem协议进行串口传输,讲解App的编写(后面会提供免费的代码下载链接), 其他的协议原理大体上都差不多, 都是通过某种协议拿到升级的代码。

流程图分析

以我例程的App1为例:

  • 先修改向量表, 因为本程序是由BootLoader跳转过来的, 不修改向量表后面会出现问题;
  • 打印版本信息, 方便查看不同的App版本;
  • 本例程的升级程序采用串口的Ymoderm协议进行传输bin文件. 具体的流程图见下图所示:

程序编写和分析

所需STM32的资源有:

  • 发送USART数据和printf重定向
  • Flash的读写
  • 串口的DMA收发
  • YModem协议相关

Ymodem协议

  • 百度百科[Ymodem协议]
  • 具体流程可自行查找相关文档, 这儿提供一个我找到的 XYmodem.pdf(文末和源码一起提供).
  • Ymodem协议相关介绍可参考我的这篇教程 YModem介绍

(https://blog.csdn.net/weixin_41294615/article/details/104652105).

代码分析

  • 代码大多数都是通过串口实现Ymodem协议的接收, 这儿就不详细说明

  • 后面放了我的源代码, 详情请参考我的源代码.

  • 主函数添加修改向量表的指令

  • 打印版本信息以及跳转指令

  • YModem相关的文件接收部分

/**
* @bieaf YModem升级
*
* @param none
* @return none
*/
void ymodem_fun(void)
{
int i;
if(Get_state()==TO_START)
{
send_command(CCC);
HAL_Delay(1000);
}
if(Rx_Flag) // Receive flag
{
Rx_Flag=0; // clean flag

/* 拷贝 */
temp_len = Rx_Len;
for(i = 0; i < temp_len; i++)
{
temp_buf[i] = Rx_Buf[i];
}

switch(temp_buf[0])
{
case SOH:///<数据包开始
{
static unsigned char data_state = 0;
static unsigned int app2_size = 0;
if(Check_CRC(temp_buf, temp_len)==1)///< 通过CRC16校验
{
if((Get_state()==TO_START)&&(temp_buf[1] == 0x00)&&(temp_buf[2] == (unsigned char)(~temp_buf[1])))///< 开始
{
printf("> Receive start...\r\n");

Set_state(TO_RECEIVE_DATA);
data_state = 0x01;
send_command(ACK);
send_command(CCC);

/* 擦除App2 */
Erase_page(Application_2_Addr, 40);
}
else if((Get_state()==TO_RECEIVE_END)&&(temp_buf[1] == 0x00)&&(temp_buf[2] == (unsigned char)(~temp_buf[1])))///< 结束
{
printf("> Receive end...\r\n");

Set_Update_Down();
Set_state(TO_START);
send_command(ACK);
HAL_NVIC_SystemReset();
}
else if((Get_state()==TO_RECEIVE_DATA)&&(temp_buf[1] == data_state)&&(temp_buf[2] == (unsigned char)(~temp_buf[1])))///< 接收数据
{
printf("> Receive data bag:%d byte\r\n",data_state * 128);

/* 烧录程序 */
WriteFlash((Application_2_Addr + (data_state-1) * 128), (uint32_t *)(&temp_buf[3]), 32);
data_state++;

send_command(ACK);
}
}
else
{
printf("> Notpass crc\r\n");
}

}break;
case EOT://数据包开始
{
if(Get_state()==TO_RECEIVE_DATA)
{
printf("> Receive EOT1...\r\n");

Set_state(TO_RECEIVE_EOT2);
send_command(NACK);
}
else if(Get_state()==TO_RECEIVE_EOT2)
{
printf("> Receive EOT2...\r\n");

Set_state(TO_RECEIVE_END);
send_command(ACK);
send_command(CCC);
}
else
{
printf("> Receive EOT, But error...\r\n");
}
}break;
}
}
}
  • 其中部分函数未在以上代码中展现, 详情请参看文末给出的源码链接.

4. 整体测试

本节主要对前三节的教程做测试验证 BootLoader + App的升级功能。

源代码

BootLoader源代码和App1源代码可以在原作者的gitee获取:

https://gitee.com/leafguo/leaf_notes/STM32CubeMX/STM32CubeMx_OTA

代码的下载

  • 由下图可知两份代码的下载区域是不一样的,所以他们 「下载的区域也不一样」

BootLoader的下载

  • BootLoader的代码默认是最开始的所以不需要特别设置代码的下载位置
  • 按照下图, 修改擦除方式为 Erase Sectors, 大小限制在 0X5000(20K)

  • 烧录代码
  • 运行, 通过串口1打印输出, 会看到以下打印消息
  • 说明BootLoader已经成功运行

App1的下载

  • App1稍微复杂一点, 需要将代码的起始位置设置为 0x08005000
  • 同时也要修改擦除方式为 Erase Sectors, 见下图

  • 烧录代码
  • 运行, 通过串口1打印输出, 会看到以下打印消息
  • 说明 BootLoader已经成功跳转到版本号为0.0.1的 App1

生成App2的.bin文件

  • Keil如何生成.bin文件, 请参考这篇博文 Keil如何生成.bin文件

https://blog.csdn.net/weixin_41294615/article/details/104656577

  • 修改代码, 把版本号改为0.0.2, 并且编译并且生成.bin文件

  • 生成好之后你会得到一个.bin结尾的文件, 这就是我们待会儿YModem要传输的文件

使用Xshell进行文件传输

  • 打开Xshell
  • 代码中, 串口1进行调试信息的打印, 串口2进行YModem升级的
  • 所以使用Xshell打开串口2进行文件传输, 串口1则可以通过串口调试助手查看调试消息
  • 你会看到App的版本成功升级到0.0.2了.
  • 如果你到了这一步.
  • 那么恭喜你! 你已经能够使用在线升级了!

5. 总结

通过本几节的教程, 想必你已经会使用在线升级了, 只要原理知道了其他的问题都可以迎刃而解了, 除了使用YModem协议传输.bin文件, 你还可以通过蓝牙, WIFI,等其他协议传输, 只要能够将.bin文件传输过去, 那其他的部分原理都差不多.

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32
关闭
关闭