当前位置:首页 > 消费电子 > 触控感测
[导读]   要点   1.现在,除了高端智能手机和平板电脑以外,用户还期望在其它应用中使用触摸屏,它们正逐步现身于汽车和仪器中。   2.在电容式触摸屏与较廉价但响应不快的电阻触摸技术的

  要点

  1.现在,除了高端智能手机和平板电脑以外,用户还期望在其它应用中使用触摸屏,它们正逐步现身于汽车和仪器中。

  2.在电容式触摸屏与较廉价但响应不快的电阻触摸技术的竞争中,成本是应用的一个约束因素。

  3.触觉技术试图模拟真实世界的感受环境,其价格正在下降,可能在游戏市场上获得第一个进展。

  自上次触摸屏研究后,触摸屏已经在智能手机中确立了自己的地位, 并正在寻机进入更低价的“功能手机”,因为手机商期望从高端手机市场攫取一些份额。像iPad这类平板电脑,以及最新的Kindle Fire也助长了触摸屏的普及。由于用户越来越熟悉消费电子中的交互式且变化多端的触摸屏,因此他们希望在其它非传统触摸屏领域也有相同水平的互操作性,如汽车、医疗电子和工业设备等。

  触摸屏面世已有几十年时间,它们通常采用的是电阻式触摸技术。使用电阻触摸屏时,用户手指的按压使屏幕外层发生物理形变,使电阻传感器接触到手指底面。电阻传感器排成一个X乘Y的阵列,并由一个薄而透明的绝缘体隔开。

  注意这里用了一个词“按压”。按压是不同于触摸或扫过的一个动作。电阻触摸屏对于多点触摸手势的响应能力有限,如捏、缩放、扫和滚动等。用户一旦习惯于用这些手势操作自己的智能手机和平板电脑,就再也用不惯缺乏这些特性的简单触摸屏了。能够响应复杂手势的触摸屏通常都采用电容式检测技术。

  电容检测触摸技术一般可采用自电容和互电容方式,不过也存在一些其它类型,如投射电容。自电容传感器由一系列氧化铟锡细线组成,它是一种排成XY网格的透明导电材料,X线与Y线之间有一个绝缘层。触摸网格上的某个区域会改变传感器对地的寄生电容。但是,这种方法不能处理多手指的触摸,因为传感器无法区分沿同一网格线上的多个手指。互电容可以探测到X线和Y线小交叠处的电容变化。由于交叠面积很小,因此电容也很小,但这种方法很精密,可以测出多个手指的位置。

  每种方案都各有利弊。虽然自电容传感器通常无法区分出多个手指的同时动作,但它们可以产生出用于探测物体的较强电磁场,哪怕该物体并没有实际接触屏幕。互电容触摸屏则可以探测和跟踪多个手指,但手指必须接触屏幕,因为两个交叠传感器形成的电容非常小,其电磁场极其微弱。

  当用户戴着手套时,手指与触摸屏之间闭合接触的需求就可能成为一个问题。电容触摸屏有这种限制,从而使人们倾向于电阻触摸屏。电阻技术在液体应用或潮湿气候下也有自己的优势,此时潮气会影响到电磁场的性能。Cypress公司的TrueTouch控制器技术尝试将自电容和互电容技术结合起来,以克服这些障碍。

  自电容和互电容都需要相同的XY传感器网格。在自电容情况下,控制器必须同时驱动X线和Y线。在互电容情况下,控制器发射X线,而从Y线接收。由于TrueTouch控制器IC采用了Cypress公司的PSoC(可编程系统单芯片)核心,因此控制器可以动态地配置其I/O脚,即时地将发射器转换为接收器。于是,无论控制器何时扫描传感器的网格板,它都可以同时在两种模式做探测(自电容和互电容)。自电容与互电容相结合,使人们即使戴着厚滑雪手套,也可以完成多触功能。这种能力产生了一个在汽车中的触摸屏安全问题。

  汽车中的触摸屏为10英寸或更大,通常大于智能手机的屏幕,后者典型尺寸约为4英寸。Atmel公司的MaxTouch系列触摸屏控制器包括通过汽车认证的mXT768E和mXT540E控制器,可用于中控台显示屏、导航系统,以及后座娱乐系统的5英寸~10英寸触摸屏。传统用于电容触摸屏的控制器都要求在多个触摸屏之间有一个屏蔽层,以防止耦合来自LCD的噪声。Atmel称MaxTouch器件提供80:1的信噪比,无需屏蔽层,能够实现单层传感器设计,从而降低成本和减小厚度(图1)。高SNR亦能够探测出一只戴薄手套的手指。一般来说,该技术可以探测厚度为1.5mm的手套,如皮、毛或棉手套。

  

  图1,触摸屏叠层中有一个ITO屏蔽(a)。去掉这样一个屏蔽层意味着减小厚度,增加显示亮度,但可能产生LCD噪声问题(b)。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭