当前位置:首页 > > 功放技术
[导读]   什么是功放?   功率放大器(PowerAmplifier,简称PA)简称功放,俗称“扩音机”,是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统

  什么是功放?

  功率放大器(PowerAmplifier,简称PA)简称功放,俗称“扩音机”,是音响系统中最基本的设备,它的任务是把来自信号源(专业音响系统中则是来自调音台)的微弱电信号进行放大以驱动扬声器发出声音。

  手机功放的特性要求

  GSM/GPRS四频手机是依据ETSI/3GPP的通讯标准来传送信号,所以功率放大器的特性必须符合以下的要求。

  一般而言,PA之输出功率等级在GSM850MHz/900MHz频段,分为5(33dBm)~19(5dBm)等十五个功率等级,在DCS1800MHz/PCS1900MHz频段,则有0(30dBm)~15(0dBm)等十六个功率等级,随着手机距离邻近基站的远近与手机收信状况的好坏,PA的输出功率等级必须依据基站的指示做相对调整及精确的设定,不是只有单一的输出功率。

  因为GSM/GPRS通讯系统乃是TDMA系统(TIme-Division-mulTIple-Access),故信号之传送(up-Link)与接收(down-Link)不是同时间发生的,而PA主要是负责传送手机信号到基站,其PA功率操作反应时间必需符合ETSI/3GPP通讯标准之规范,如图1所示,分三段时间区域(a)28us(b)542.8us(c)28us,在(a)区域,当手机欲传送信号到基站,PA必须在28us内做好Power-ramping-up的准备工作,使PA输出功率保持在一个稳定且固定的值,以便开始做真正的手机信号传送工作,此即为(b)区域,而当信号传送完毕,一样须在(c)区域28us内做完Power-ramping-down即关掉PA Power,以节省电池电流消耗,同时进入接收模式(接收基站信号),另外,有两点值得一提的是:

  (1)在(a)与(c)区域中,PA之反应速度要够快,以使PA能在28us内分别达到PA全功率输出与无功率输出,而且其功率输出的增加率(ramping-up)或递减率(ramping-down)也必须能有适当的快慢以达到很平滑(smooth)的功率上升、下降曲线,否则容易产生所谓的开关频谱噪声,进而影响邻近手机使用者之通话品质。

  (2)在(b)区域中,PA之输出功率必须维持非常稳定,功率变动范围在±1dB内,否则手机欲传之信号很容易因PA本身功率不稳定,而受到PA的调变,因而产生调变频谱噪声,此将大大提升手机本身通话时之BER(Bit-error-rate),使通话品质不佳。

  图1 PA的输出功率VS时间图

  因移动手机与基站的最远距离约有35公里,PA的输出功率约在30~35dBm,所以PA需要较大的供应电流,其电流可高达1.6~2A,一般PA的输出效率约在50%,再加上PA工作周期(duty

  cycle)到GPRS Class 12的应用时将会达到50%

  (4个时隙),因此PA模块将会产生大量的热在IC本身,所以必须有很好的散热处理,否则PA容易因过热而损坏。

  因移动手机本身常会在相当不好的环境中使用,如高速行驶、恶烈气候环境等,所以手机本身的接收灵敏度(SensiTIvity)要求很高,在此同时,PA所需之输出功率又要比较高,故对PA工作时相对产生的接收频带噪声功率等等特性之要求将更加严格。

  一般手机PA在正常的操作模式下,输出端所看到的阻抗为50Ω负载,但是当手机使用者不当使用手机,例如手握天线,甚至拔掉天线,将会发生PA负载阻抗完全偏离正常工作50Ω负载,这就是所谓的PA失配(mismatch),在这样的状况下,PA功率送不出去,将会导致更多的热散在IC上,易导致PA烧坏,此外,因PA本身是大功率组件,除了输出功率,同时会产生很大的热噪声,PA本身即会有很大的稳定度问题,若是再发生失配状况,更易导致PA振荡,因而产生其它频率之噪声(SpuriousOscillaTIon noise) ,影响到其它手机系统使用者,故PA设计本身必须确保在失配状况下,PA不会发生振荡与烧坏之现象。

  如同前点所说,PA乃是一个大功率组件,且其输出端功率乃是用微带传输线来做阻抗匹配,故RF信号容易经由介质耦合和空气中辐射到PA外围手机通讯电路,甚至影响邻近手机使用者。其中最典型的例子即信号耦合到PLL中的VCO,容易造成VCO的频率偏移,此将大大影响手机本身之通话品质,故PA设计本身之屏弊与隔离乃是充满挑战的一个课题。

  PA 的技术与运作PA的设计近年来由于在IC输出阻抗匹配线路之Q值不佳,所以多采用多芯片模块(MCU,Multi-Chip-Module)的结构,如图2。

  图2 PA的功能方块图

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭