当前位置:首页 > 通信技术 > 移动通信
[导读]   1. 引言   在21世纪,移动通信技术和市场飞速发展,在新技术、市场需求的共同作用下,出现了第三代移动通信系统-3G,3G中采用码分多址(CDMA)技术来处理多径问题,以获得多径分

  1. 引言

  在21世纪,移动通信技术和市场飞速发展,在新技术、市场需求的共同作用下,出现了第三代移动通信系统-3G,3G中采用码分多址(CDMA)技术来处理多径问题,以获得多径分集增益。

  然而在该体制中,多径干扰和多用户干扰始终并存,在用户数较多的情况下,实现多用户检测是非常困难的。并且CDMA本身是一个自扰系统,所有的移动用户都占用相同的带宽和频率,所以在系统容量有限的情况下,用户数越多就越难达到较高的通信速率,因此3G系统所提供的2Mb/s带宽是共享式的,当多个用户同时使用时,平均每个用户可使用的带宽远低于2Mb/s,而这样的带宽并不能满足移动用户对一些多媒体业务的需求。

  不同领域技术的综合与协作,伴随着全新无线宽带技术的智能化,以及定位于用户的新业务,这一切必将繁衍出新一代移动通信系统4G。相比于3G,4G可以提供高达100Mb/s的数据传输速率,支持从语音到数据的多媒体业务,并且能达到更高的频谱利用率以及更低的成本。

  为了达到以上目标,4G中必须采用其他相对于3G中的CDMA这样的突破性技术,尤其是要研究在移动环境和有限频谱资源条件下,如何稳定、可靠、高效地支持高数据速率的数据传输。因此,在4G移动通信系统中采用了OFDM技术作为其核心技术,它可以在有效提高传输速率的同时,增加系统容量、避免高速引起的各种干扰,并具有良好的抗噪声性能、抗多径信道干扰和频谱利用率高等优点。

  本文将对OFDM的基本原理以及其调制/解调技术的实现和循环前缀技术进行介绍,并在三个主要方面将OFDM与CDMA技术进行对比分析。

  2 OFDM技术分析

  2.1 OFDM基本原理

  正交频分复用的基本原理可以概述如下:把一路高速的数据流通过串并变换,分配到传输速率相对较低的若干子信道中进行传输。在频域内将信道划分为若干相互正交的子信道,每个子信道均拥有自己的载波分别进行调制,信号通过各个子信道独立地进行传输。

  由于多径传播效应会造成接收信号相互重叠,产生信号波形间的相互干扰,形成符号间干扰,如果每个子信道的带宽被划分的足够窄,每个子信道的频率特性就可近似看作是平坦的。如图1所示。

  

  因此,每个子信道都可看作无符号间干扰的理想信道。这样,在接收端不需要使用复杂的信道均衡技术即可对接收信号可靠地进行解调。在OFDM系统中,通过在OFDM符号之间插入保护间隔来保证频域子信道之间的正交性,以及消除由于多径传播效应所引起的OFDM符号间的干扰。因此,OFDM特别适合于在存在多径衰落的移动无线信道中高速传输数据。OFDM的原理框图如2所示。

  

  如图2所示,原始高速率比特流经过串/并变换后变为若干组低速率的比特流d(M),这些d(M)经过调制后变成了对应的频域信号,然后经过加循环前缀、D/A变换,通过RF发送出去;经过无线信道的传播后,在接收机以与发送机相反的顺序接收解调下来,从而得到原发送信号。

  图2中d(M)为第M个调制码元;图中的OFDM已调制信号D(t)的表达式为:

  

  式(1)中:T为码元周期加保护时间;fn为各子载波的频率,可表示为:

  

  式(2)中:f0为最低子载波频率;Ts为码元周期。

  在发射端,发射数据经过常规QAM调制形成基带信号。然后经过串并变换成M个子信号,这些子信号再调制相互正交的M个子载波,其中/正交0表示的是载波频率间精确的数学关系,其数学表示为QT0fx(t)fy(t)dt=0,最后相加成OFDM发射信号。实际的输出信号可表示为:

  

  在接收端,输入信号分成M个支路,分别用M个子载波混频和积分,恢复出子信号,再经过并串变换和常规QAM解调就可以恢复出数据。由于子载波的正交性,混频和积分电路可以有效地分离各子载波信道,如下式所示:

  

  式中dc(m)为接收端第m支路子信号。在整个OFDM的工作流程中OFDM与其他技术的主要区别在于其采用的调制/解调技术以及循环前缀的加入这两个环节,下面将对其进行较为详细的分析。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭