当前位置:首页 > 嵌入式 > 程序员小哈
[导读]在与传感器或者模块的总线进行通信的时候,常常需要使用到精确延时,一般我们会封装几个常用延时函数, 下面我们以STM32F103芯片为例,详细介绍一下STM32下一种精确延时函数的实现: 时钟树 下图中紫色的 to Cortex System timer(MHz)就是Systick的时钟频率

在与传感器或者模块的总线进行通信的时候,常常需要使用到精确延时,一般我们会封装几个常用延时函数 下面我们以STM32F103芯片为例,详细介绍一下STM32下一种精确延时函数的实现:


时钟树

下图中紫色的 to Cortex System timer(MHz)就是Systick的时钟频率;



SYSTICK原理

SysTick 是一个24位的倒计数定时器,当计到0时,将从RELOAD寄存器中自动重装载定时初值并继续计数,且同时触发中断。只要不把它在SysTick控制及状态寄存器中的使能位清除,就永不停息。
SysTick 的最大使命,就是定期地产生异常请求,作为系统的时基,产生一个周期性的中断。


Systick定时器的四个寄存器:

CTRL: Systick控制和状态寄存器
LOAD: Systick重装载寄存器
VAL: Systick当前值寄存器
CALIB: Systick校准值寄存器 (不常用,可忽略)



/** @addtogroup CMSIS_CM3_SysTick CMSIS CM3 SysTick memory mapped structure for SysTick @{*/typedef struct{ __IO uint32_t CTRL; /*!< Offset: 0x00 SysTick Control and Status Register */ __IO uint32_t LOAD; /*!< Offset: 0x04 SysTick Reload Value Register */ __IO uint32_t VAL; /*!< Offset: 0x08 SysTick Current Value Register */ __I uint32_t CALIB; /*!< Offset: 0x0C SysTick Calibration Register */} SysTick_Type;




SysTick->CTRL寄存器:

CLKSOURCE-时钟源[2]: select the clock soruce, 0 : AHB / 8, 1 : AHB.

0:STCLK=外部时钟源HCLK(AHB总线时钟)/8=72M/8 = 9M  

1:FCLK=内核时钟=72M

FCLK:空闲运行时钟



SysTick-> LOAD寄存器:



SysTick-> VAL寄存器:



#include "delay.h"
static u8 fac_us=0; //us延时倍乘数 static u16 fac_ms=0; //ms延时倍乘数 //初始化延迟函数//SYSTICK的时钟固定为HCLK时钟的1/8,即SYSTICK=SYSCLK/8//SYSCLK:系统时钟void delay_init(){ SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8); //选择外部时钟 HCLK/8
fac_us=SystemCoreClock/8000000; //SYSTICK时钟为9M(即8分频)时,fac_us=9,即SysTick倒数9个数,耗时1us fac_ms=(u16)fac_us*1000; //非OS下,代表每个ms需要的systick时钟数 }
//查询SysTick->CTRL寄存器bit0是否为1,当为1时,说明倒计时时间到;//整个延时方法中,不进入SysTick中断;//延时nus//nus为要延时的us数. void delay_us(u32 nus){ u32 temp; SysTick->LOAD=nus*fac_us; //延时时间加载 SysTick->VAL=0x00; //清空计数器 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 //do while 判断就是 systick 使能(bit0)位为 1 且(bit16)为1的时候等待结束 do { temp=SysTick->CTRL; }while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达 SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL =0X00; //清空计数器 }
//延时nms//注意nms的范围//SysTick->LOAD为24位寄存器,所以,最大延时为://nms<=0xffffff*8*1000/SYSCLK//SYSCLK单位为Hz,nms单位为ms//对72M条件下,nms<=1864void delay_ms(u16 nms){ u32 temp; SysTick->LOAD=(u32)nms*fac_ms; //时间加载(SysTick->LOAD为24bit) SysTick->VAL =0x00; //清空计数器 SysTick->CTRL|=SysTick_CTRL_ENABLE_Msk ; //开始倒数 do { temp=SysTick->CTRL; }while((temp&0x01)&&!(temp&(1<<16))); //等待时间到达 SysTick->CTRL&=~SysTick_CTRL_ENABLE_Msk; //关闭计数器 SysTick->VAL =0X00; //清空计数器 }



有了上面函数实现,我们就可以在程序中进行精准延时了,比如delay_us(50);
在刚进入delay_us函数的时候,先计算好这段延时需要等待的SysTick计数次数,这里为50*9(假设系统时钟为72MHz,因为systick的频率为系统时钟频率的1/8,那么systick每增加1,就是1/9us),然后我们就一直读取SysTick->CTRL寄存器,当该寄存器bit16的值为1时,说明倒计时了50*9个SysTick,即说明延时50us时间到了。

参考资料:

【正点原子】MiniSTM32开发板资料


喜欢请关注微信公众号:程序员小哈

有啥想玩的模块,留言给我,咱们一起玩


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭