当前位置:首页 > 物联网 > 网络协议
[导读]   1.引言   USB3.0是一个高速,串行,源同步数据传输协议。但是数据经过传输线与原数据发生了很大的偏差。本文从USB3.0的角度分析了弹性缓冲机制,解释了与其他设计的不同,并采用

  1.引言

  USB3.0是一个高速,串行,源同步数据传输协议。但是数据经过传输线与原数据发生了很大的偏差。本文从USB3.0的角度分析了弹性缓冲机制,解释了与其他设计的不同,并采用指针控制与握手的设计方法实现。

  2.弹性缓冲作用

  2.1 USB3.0弹性缓冲作用域

  在USB3.0中数据传输采用双单工,因此物理层设计为接收、发送2组差分对传输部分。传输线是承载数据传输的载体。因此如何从传输线正确接收数据,并把它同步到系统内部时钟域,变的十分关键。

  USB3.0中规定的物理层接收部分结构图如下,它包括差分接收、时钟数据恢复、串并转换和8B10B译码。

  

 

  图 1USB3.0物理层接收部分结构

  整个数据流向自上而下,差分输入经过差分接收,从差分信号中提取出时钟,并用恢复出来的时钟来恢复出数据(CDR)。恢复出来的数据在接收时钟域进行串并转换为10bit位宽并行数据1,并检测USB3.0包起始标志符(K28.5)。一旦检测到起始标志符K28.5,使能符号有效(symbol lock),直至检测到结束符号,才结束符号有效。

  弹性缓冲从串并转换接收数据,所有的接收数据与控制都工作在接收时钟域(receive clock)。因此弹性缓冲要把数据与控制同步到系统时钟域(system clock)。把数据向下传递给8B10B译码模块,而后传递给系统内部。

  2.2 弹性缓冲容量

  USB3.0中,协议规定允许的时钟精度为-5300ppm到300ppm。而符号时钟频率为2ns即2000ps,最坏情况下每178个symbol添加或者删除一个SKP,也就是每356个symbol添加或者删除一个SKP对(SKP Order Sets)。USB3.0中包最长为1052字节,所以最差情况下,最多可以添加或删除8个SKP或者4个SKP对,所以弹性缓冲至少要能缓冲8个SKP。USB3.0协议规定每个SKP order sets为2个连续的SKP symbol。因此在10B8B译码前,SKP order set的游程(running disparity)应该是互补的。

  通过计算得知,弹性缓冲的缓冲容量为8。本文设计采用常半满2(normal half full)模式来设计弹性缓冲,所以弹性缓冲容量为16,在正常情况下里面应该有8个数据,剩下的8个为缓冲空间,因此叫常半满。常半满模式首先要向缓冲中写满8个symbol,达到半满,然后读使能才可以有效,因此大约有8个时钟的延迟。常半满模式只有在symbol队列中出现SKP对才能添加或者删除SKP对。下图为常半满输入输出时序图。

  

 

  图 2 常半满输入输出时序

  从上图可以看出,rx_valid_out有效要晚于rx_valid_in约8个时钟沿;而无效却晚于rx_valid_out约0至16个时钟沿(取决于时钟精度差)。因此常半满需要8个时钟延迟才能输出数据。

  2.3 弹性缓冲机制

  弹性缓冲本质上是读写同时受控的异步FIFO,常半满(normal half full)FIFO,其深度为16,首先要写满8个有效数据,并一直维持在半满的状态。因此在正常情况下,FIFO一直处于或接近半满状态,当读写时钟一样快慢的时候,FIFO中有8个有效数据。

  

 

  图 3 常半满读写同等速率

  当读时钟快于写时钟,读出的数据多于写入的数据,常半满模式可能导致FIFO中的数据数量少于8,甚至有可能被读空。如下图所示,在出现SKP窗口的时候,FIFO中的有效数据为4,比常态少4。所以此时,弹性缓冲应该添加4个SKP,使得FIFO维持半满,以此来调节时钟。此时读指针向前跳跃4个间隔,并且当读指针读到跳跃区间时,完成SKP添加。

  

 

  图 4 常半满模式读快于写

  当读时钟慢于写时钟,写入的数据多于读出的数据,常半满模式可能导致FIFO中的数据数量多于8,甚至有可能被写满。如下图所示,在出现SKP窗口的时候, FIFO中有效数据为10,比常态多2. 所以此时,弹性缓冲应该删除2个SKP,使得FIFO维持半满,以此来调节时钟。此时写指针应该暂停2个时钟周期,完成SKP删除。

  

 

  图 5 常半满写快于读

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭