当前位置:首页 > 电源 > 电源电路
[导读]通常由于电源电压是加在EMI共模电感的两个线圈上的,因而绝缘特性也很重要。这样的形状对于泄漏电感和绝缘耐压都有利。

通常由于电源电压是加在EMI共模电感的两个线圈上的,因而绝缘特性也很重要。所以多采用下图的形状,这样的形状对于泄漏电感和绝缘耐压都有利。

反激式开关电源EMI设计电路原理,你值得收藏!

EMI滤波器的作用是双方向性的,既能有效阻止外界的电磁干扰经电源线进入设备,又能阻挡设备自身工作中产生的电磁骚扰经电源线进入电网,传送到其他敏感设备。所以它是抗干扰和干扰抑制中都用得到的一种器件。

图中,电感的两个线圈绕在同一磁芯上(同名端都在线圈左侧),这种接线对差模电流(包括电源电流)产生的磁通相互抵消,不会产生磁路饱和;而对共模电流则体现一个很大的电感,取得大的滤波效果,故这个电感被称为共模电感。滤波器的这一结构特点说明它在很大程度上是用来对付共模干扰的。对一定尺寸的滤波器来说,在磁芯选定以后,电感线圈的电感量将取决于所用导线的线径,电流小的线径较细,线圈匝数可多一点,电感量就大一点;反之亦反。其典型值为几mH到零点几mH。

反激式开关电源EMI设计电路原理,你值得收藏!

由于两个线圈不可能完全对称,两个线圈产生的磁力线也不会全部集中在磁芯中,会产生一部分抵消不掉的漏磁通,造成有一定寄生的差模电感的存在,这对于克服差模干扰是有好处的(由于泄漏电感能够除去差模干扰,所以反而希望有适度的泄漏电感)。寄生差模电感的电感量测量可在两个线圈的进线侧相互短接的情况下,从两个线圈的出线侧来测量。电感量的大小因共模扼流圈的形状以及绕线方法不同而异,一般来说是共模电感量的0.1%--1%。

共模干扰:由于电位差造成的电流扰动,对地的扰动称为共模干扰。

C2,C6位于火线与零线之间,用于衰减差模干扰,故称为差模电容。电容量的大小因涉及所用线路中容性差模电流的大小,对设备并无不利影响。电容器的耐压与火线—零线电压相当。常用250VAC的CBB(聚丙烯)电容,典型值为几十到几百nF。一般会在电容的两端并联一个电阻值为1M欧的电阻,起到泄放电容器上静电荷的作用,防止拔插电源时,电容通过人体放电,造成人身触电。此电阻不是必须的。

X ( C2,C6 ) 电容与共模电感组成pai型滤波电路,主要解决的是EMI,传导,副射等。X电容的引脚间距即安全间距在安规里面是有要求的。X电容最大不会大于1.5uF。

说明:当没有共模电感时,电源通过保险,二极管,地,回到N线。可以看到回路中没有电阻,启动时刻,电容相当于短路,会产生浪涌;由于有共模电感的存在,可以有效的抑制浪涌电流,共模电感在启动时起到电抗的作用,使电容缓慢充电,起到保护元件及保险的作用。

C5,C10位于火线对地和零线对地处,与共模电感一起用于衰减共模干扰,故称为共模电容。因为他们涉及直流耐压和工频耐压的检验,故电容耐压至少为3KVDC。同时,又涉及对地泄漏电流的问题,故电容的容量受到限制,不能任意取大,一般为1—4nF ( 典型值为2.2nF )。

Y ( C5,C10 ) 电容:L,N差分的滤波用x电容;L,N与地的滤波用Y电容。

EMI滤波器的电路结构仅仅决定了它的低频特性(相当于一种低通滤波器的动作)。要想提高滤波器的高频特性,关键是注意其制作工艺。

如造成高频特性欠佳的主要原因是:A、结构不好,导致输入与输出之间有高频耦合。B、选用器件的高频特性不好。

通常EMI滤波器电路的结构设计要求循一个方向布局,在空间允许的情况下,电感与电容要保持一定距离。

在器件选用上,为控制电感的分布电容,电感器尽量用单层绕制,必要时可采用多个电感串联的办法来达到所需电感量。对电容的引线,要求短(“短”意味着引线电感小)。要选用寄生电感小的电容和寄生电容小的电感;在焊接时,电容器的引线要尽量短。这里共模电容对于保证共模滤波特性尤其重要,而在实际使用中,共模干扰的频率又比较高,所以选择共模电容的特性好坏是关键。除了用高频陶瓷电容外,目前市上还有三端电容和穿心电容出售,对改进滤波器的高频特性很有帮助。此外,滤波器的接地线要保持粗短,并保证与地是低阻抗的连接。

EMI中共模电感抑制的是对地的干扰。共模电感的大小以及x电容和Y电容的大小以现场测试再做调整。共模电感抑制共模电流的原理是:如果在L线上产生干扰,会造成磁场变化,N线上的磁场也发生变化,也抑制了干扰。L,N就不会发生电位差,不会由于电位差造成电流的扰动。

如果测试时,副射过不了怎么办?解决的方法是将共模电感加大,X电容容值加大。但X电容太大的话,漏电流也就变大。一样是过不了副射等。国标上对漏电流是有标准的,对于潮湿的地方,漏电流要求可以大一点,标准是小于0.76mA。对于干噪的地方,要求小于0.2几mA。

变压器,MOS管处布线时覆大地并连接到Y电容的大地。这样对EMI的抑制有很大的好处。

EMI滤波器对付高频传导干扰比较适用,对于雷击浪涌的干扰就不适用。因此,为了抑制雷击浪涌的干扰,还必须配合使用压敏电阻等干扰吸收器件。

电容C7耐压的选择:220V*1.414 = 311V,留余量,电容选用450V。

保险要求用慢断型的。T代表慢断型的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭