当前位置:首页 > 电源 > 功率器件
[导读]小编通常在在电机控制器的设计过程中,对功率器件MOSFET的漏极电流 I D I_DID 进行校核计算是一项重要工作。

小编通常在在电机控制器的设计过程中,对功率器件MOSFET的漏极电流 I D I_DID 进行校核计算是一项重要工作。这里把我自己的一些推导过程做简单叙述,主要针对某型车用电机所匹配的电机控制器,功率器件为N-MOS,交流端输出波形为正弦波,并且假设调制比 m = 1 m=1m=1 。下文里面出现的变量均如题图所示。

本文如有错误和叙述不清之处,恳请读者批评指正。

1. 交流输出端线电流 I L I_LIL:

对于特定的某相而言,例如U相,其交流输出的电流的有效值 I L I_LIL 实际上由与之串联的MOS提供,所以数值上等于从对应的MOS的漏极D输入、源极S输出的漏极电流 I D I_DID,有:

I L = I D I_L=I_DIL=IDI D I_DID,漏极电流(有效值);

由于三相是对称的,所以V、W相的表达式也是如此。这里为了行文简洁,不标注表示U相的角标。下文如果没有专门说明,也是针对U相做分析。

2. 交流输出端线电压 U L U_LUL:

交流端由于是三相,所以应考虑区分相电压和线电压。其中,U点相对V点的交流线电压 U L U_LUL 的峰值等于直流母线电压 U D C U_{DC}UDC,对于SVPWM方式,线电压 U L U_LUL 的有效值为直流母线电压 U D C U_{DC}UDC 的 1 / 2 1/\sqrt{2}1/2,即:

U L = 1 2 ⋅ U D C U_L=\frac{1}{\sqrt{2}}\cdot U_{DC}UL=21⋅UDCU D C U_{DC}UDC,直流母线电压;

3. 电机端的相电流 I p I_pIp:

电机采用星形接法,电机的A相绕组和电机控制器的U相串联,所以电机A相的相电流 I p I_pIp 与电机控制器U相的线电流 I L I_LIL 相等:

I p = I L I_p=I_LIp=ILI L I_LIL,输出端线电流;

4. 电机端的相电压 U p U_pUp:

电机采用星形接法,电机A相的相电压等于电机控制器线电压的 1 / 3 1/\sqrt{3}1/3,即:

U p = 1 3 ⋅ U L U_p=\frac{1}{\sqrt{3}}\cdot U_LUp=31⋅ULU L U_LUL,输出端线电压;

5. 有功功率 P PP:

考虑电机A相绕组,其有功功率等于加在它身上的相电压 U p U_pUp、通过它的相电流 I p I_pIp、当前功率因数 c o s φ cos\varphicosφ 三者的乘积,再考虑共有三个一样的绕组,所以整个电机的有功功率 P PP 为:

P = 3 ⋅ c o s φ ⋅ U p ⋅ I p P=3\cdot cos\varphi\cdot U_{p}\cdot I_pP=3⋅cosφ⋅Up⋅Ip代入上文得到的相电压 U p U_pUp 和相电流 I p I_pIp 的表达式,得到有功功率 P PP 关于电机控制器线电压 U L U_LUL 和线电流 I L I_LIL 的表达式:

P = 3 ⋅ c o s φ ⋅ U L ⋅ I L P=\sqrt{3}\cdot cos\varphi\cdot U_{L}\cdot I_LP=3⋅cosφ⋅UL⋅IL再代入线电压 U L U_LUL 和线电流 I L I_LIL 的表达式,得到有功功率 P PP 关于直流母线电压 U D C U_{DC}UDC 和漏极电流 I D I_DID 的表达式:

P = 3 2 ⋅ c o s φ ⋅ U D C ⋅ I D P=\frac{\sqrt{3}}{\sqrt{2}}\cdot cos\varphi\cdot U_{DC}\cdot I_DP=23⋅cosφ⋅UDC⋅ID以上各式中,

c o s φ cos\varphicosφ,功率因数;

U p U_pUp,电机端相电压;

I p I_pIp,电机端相电流;

U L U_LUL,交流输出端线电压;

I L I_LIL,交流输出端线电流;

U D C U_{DC}UDC,直流母线电压;

I D I_DID,漏极电流;

6. 漏极电流 I D I_DID:

由有功功率 P PP 的表达式可以反求漏极电流 I D I_DID:

I D = 2 3 ⋅ c o s φ ⋅ P U D C I_D=\frac{\sqrt{2}}{\sqrt{3}\cdot cos\varphi}\cdot \frac{P}{U_{DC}}ID=3⋅cosφ2⋅UDCPP PP,有功功率;

c o s φ cos\varphicosφ,功率因数;

U D C U_{DC}UDC,直流母线电压;

I D C I_{DC}IDC,直流母线电流;

需要注意的是,这里漏极电流 I D I_DID 是单个半桥臂,本例中也就是题图中所示的单个MOS提供的漏极电流。但如果半桥臂是由N个MOS并联的,则 I D I_DID 应为N个MOS的漏极电流之和。

7. 漏极电流峰值 I D m I_{Dm}IDm:

I D I_DID 为漏极电流的有效值,由于输出波形是正弦波,所以漏极电流的峰值为漏极电流有效值的 2 \sqrt{2}2 倍,即:

I D m = 2 ⋅ I D I_{Dm}=\sqrt{2}⋅I_DIDm=2⋅ID假设桥臂使用N个MOS并联。那么可以使用规格书中提供的连续漏极电流的许用值校核 I D / N I_D/NID/N 和I D m / N I_{Dm}/NIDm/N,并使用脉冲漏极电流许用值校核I D m I_{Dm}IDm。

注意这里是用N个MOS的总漏极电流峰值 I D m I_{Dm}IDm 和单个MOS的脉冲漏极电流许用值做比较。这是考虑到各MOS存在差异,导通时间并不相同,所必然会存在只有一个MOS导通的时刻。此时,这个提前导通的MOS承担了本应由N个MOS共同承担的所有电流,也就是 I D m I_{Dm}IDm。

当然了,校核并不是简单的小于许用值就算合格,还需要考虑足够的安全系数。这个安全系数受到不同的原料、工艺、场景和客户(大雾)等因素的影响会有不同的取值,这里就不展开说了。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭