当前位置:首页 > > 21ic电子网
[导读]插件电阻往往用色环表示电阻阻值,贴片电阻上面的印字绝大部分标识其阻值大小。贴片电阻的阻值通常以数字形式直接标注在电阻的表面,所以读电阻的阻值直接看电阻表面的数字即可。

插件电阻往往用色环表示电阻阻值,贴片电阻上面的印字绝大部分标识其阻值大小。贴片电阻的阻值通常以数字形式直接标注在电阻的表面,所以读电阻的阻值直接看电阻表面的数字即可。一般会有四种表示方法:


0 1.
常规  位数字标注法

由三个数字组成。前面两位是有效数字,第三位数表示科学计数法中10的幂指数,基本单位是Ω,即:XXY=XX*。例如103,1和0是有效数字直接写下来即可,3表示10 的几次幂,即10的3次方,如图所示。所以103表示的阻值就是10×Ω=10×1000Ω=10000Ω=10kΩ。

原来,贴片电阻上的数字竟然代表这种含义?!

常规 位数字标注法表示电阻阻值

常规 位数标注法表示电阻阻值多用于E-24 系列。精度为±5%(J),±2%(G),部分厂家也用于±1%(F)。举例如表:

常规 位数标注法表示电阻阻值实例:

实际标注

算法

实际值

100

100=10*100=10*1=10

10Ω

181

181=18*101=18*10=180

180Ω

272

272=27*102=27*100=2.7K

2.7KΩ

333

333=33*103=33*1000=33K

33KΩ

434

434=43*104=43*10000=430K

430KΩ

565

565=56*105=56*100000=5.6M

5.6MΩ


0 2.
常规  位字数标注法


由四个数字组成,一般电阻的误差±1%。前面三位是有效数字,第四位表示科学计数法中10的幂指数。例如1502,150是有效数字, 2表示10的二次方,如图所示。基本单位是Ω,即:XXXY=XXX*,所以1502的阻值就是150×10的二次方=150×100=15000Ω=15KΩ。

原来,贴片电阻上的数字竟然代表这种含义?!

常规 位数字标注法表示电阻阻值

常规 位数字标注法多用于E-24,E-96 系列,精度为±1%(F),±0.5%(D)。举例如表所示。

常规 4位数标注法表示电阻阻值实例:

实际标注

算法

实际值

0100

0100=10*100=10*1=10

10Ω

1000

1000=100*100=100*1=100

100Ω

1821

1821=182*101=182*10=1.82k

1.82kΩ

2702

2702=270*102=270*100=27k

27kΩ

3323

3323=332*103=332*1000=332k

332kΩ

4304

4304=430*104=430*10000=4.3M

4.3MΩ

2005

2005=200*105=200*100000=20M

20MΩ


0 3.
字母表示小数点位置


R表示小数点位置的方法是由数字和字母组成,例如5R6、R16等。这里只需要把R换成小数点即可,如图14.3所示。例如:5R6=5.6Ω、R16=0.16Ω。

原来,贴片电阻上的数字竟然代表这种含义?!

R表示小数点位置的方法表示电阻阻值

这里应该注意一下,"R"是表示电阻,“Ω”是表示电阻的单位——“欧姆”,在物理概念里面,我们不会也不能把两者混用。但是在工业生产中,由于使用希腊字母不是很方便,所以经常采用R代替“Ω”作为单位。

① R 表示小数点位置的方法表示电阻阻值实例:

实际标注

算法

实际值

10R

10R=10.0

10Ω

1R2

1R2=1.2

1.2Ω

R01

R01=0.01

0.01Ω

R12

R12=0.12

0.12Ω

100R

100R=100.0

100Ω

12R1

12R1=12.1

12.1Ω

4R70

4R70=4.70

4.70Ω

R051

R051=0.051

0.051Ω

R750

R750=0.750

0.750Ω

字母M、k、R、m都可以用来表示小数点。单位为 mΩ时,m 表示小数点位置。m表示小数点位置的方法表示电阻阻值实例如表格所示。

② m表示小数点位置的方法表示电阻阻值实例:

实际标注

算法

实际值

36m

36m=36mΩ

36mΩ

5m1

5m1=5.1mΩ

5.1mΩ

100m

100m=100mΩ

100mΩ

47m0

47m0=47.0mΩ

47.0mΩ

5m10

5m10=5.10mΩ

5.10mΩ

同样,如果单位是MΩ,kΩ,则M、k表示小数点位置。不过这种情况比较少,一般MΩ,kΩ数量级的电阻采用3位数字或者4位数字来表示。

0 4.
3 位数乘数代码(Multiplier Code)标注法


以上内容,有些读者应该在学校时已经学习和接触,而且也比较好理解。但是一些小封装的精密电阻由于空间太小,可能不印刷丝印,例如0201封装的电阻往往什么字都不印,如图所示各种封装电阻的丝印对比。

原来,贴片电阻上的数字竟然代表这种含义?!

各种封装电阻的丝印对比

但是有些精密电阻印了丝印,但是并不符合我们前面描述的三个方法。而是两个数字加一个字母表示。例如50B、01C,如图14.5所示。这种又是什么方法呢?


原来,贴片电阻上的数字竟然代表这种含义?!

3 位数乘数代码(Multiplier Code)标注法表示电阻阻值

这个方法就是用代码表示数字。丝印为两个数字加一个字母的电阻,一般是精密电阻,这种精密贴片电阻是对某一个优先数进行编码,然后通过代码找到其代表的数值,如01C就是10K。下面是代码,就像查字典一样。又例如:10欧的电阻用代码01X表示,仔细看下表你就会明白的。

这种方法的格式是XXY,前两位 XX 指有效数的代码,转换为科学计算前面的数值;后一位Y指10的几次幂的代码,转换为科学计数法的10的几次幂。

我们查找前两位数字所代表的数值大小,可以查找E-96 阻值代码表,如表所示。查找第三位字母表示的10的几次幂,可以查找E-96 乘数代码表,如表所示。

① E-96 阻值代码表:

代码

阻值

代码

阻值

代码

阻值

代码

阻值

01

100

25

178

49

316

73

562

02

102

26

182

50

324

74

576

03

105

27

187

51

332

75

590

04

107

28

191

52

340

76

604

05

110

29

196

53

348

77

619

06

113

30

200

54

357

78

634

07

115

31

205

55

365

79

649

08

118

32

210

56

374

80

665

09

121

33

215

57

383

81

681

10

124

34

221

58

392

82

698

11

127

35

226

59

402

83

715

12

130

36

232

60

412

84

732

13

133

37

237

61

422

85

750

14

137

38

243

62

432

86

768

15

140

39

249

63

442

87

787

16

143

40

255

64

453

88

806

17

147

41

261

65

464

89

825

18

150

42

267

66

475

90

845

19

154

43

274

67

487

91

866

20

158

44

280

68

499

92

887

21

162

45

287

69

511

93

909

22

165

46

294

70

523

94

931

23

169

47

301

71

536

95

953

24

174

48

309

72

549

96

976

② E-96 乘数代码表:

代码

A

B

C

D

E

F

G

H

X

Y

Z

乘数

100

101

102

103

104

105

106

107

10-1

10-2

10-3

三位乘数代码标注方法表示电阻阻值实例如表格14.7所示。51、18、02所代表的数值,通过查找表得到分别为:332、150、102;X、A、C的含义可以通过查找表格得到,分别为:10-1、100、102

③ 三位乘数代码标注方法表示电阻阻值实例:

实际标注

算法

实际值

51X

51X= 332*10-1 =332*0.1=33.2

33.2Ω

18A

18A=150*100 =150*1=150

150Ω

02C

02C=102*102=102*100=10.2K

10.2KΩ


免责声明:本文系网络转载,版权归原作者所有。如有问题,请联系我们,谢谢!


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭