当前位置:首页 > > TsinghuaJoking
[导读]很多情况下,为了能够观察到数据之间的内部的关系,可以使用绘图来更好的显示规律。

很多情况下,为了能够观察到数据之间的内部的关系,可以使用绘图来更好的显示规律。


比如在下面的几张动图中,使用matplotlib中的三维显示命令,使得我们可以对于logistic回归网络的性能与相关参数有了更好的理解。


下面的动图显示了在训练网络时,不同的学习速率对于算法收敛之间的影响。



下面给出了绘制这些动态曲线的相关的python指令:

01 3D plot


1.基本语法

在安装matplotlib之后,自动安装有 mpl_toolkits.mplot3d。

#Importing Libraries
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d

#3D Plotting
fig = plt.figure()
ax = plt.axes(projection="3d")

#Labeling
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')

plt.show()

2.Python Cmd

使用pythoncmd 插入相应的语句。

3.举例

(1) Ex1

#!/usr/local/bin/python
# -*- coding: gbk -*-
#******************************
# TEST2.PY                     -- by Dr. ZhuoQing 2020-11-16
#
# Note:
#******************************

from headm import *
from mpl_toolkits.mplot3d import axes3d

ax = plt.axes(projection='3d')
x = [1,2,3,4,5,6,7,8,9]
y = [2,3,4,6,7,8,9,5,1]
z = [5,6,2,4,8,6,5,6,1]

ax.plot3D(x,y,z)
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')

plt.show()

#------------------------------------------------------------
#        END OF FILE : TEST2.PY
#******************************
▲ 3D plot的演示

(2) Ex2

from mpl_toolkits.mplot3d import axes3d

ax = plt.axes(projection='3d')

angle = linspace(02*pi*5400)
x = cos(angle)
y = sin(angle)
z = linspace(05400)

ax.plot3D(x,y,z)
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')

plt.show()
▲ 3D绘制的例子

(3) Ex3

import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt

mpl.rcParams['legend.fontsize'] = 10

fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
z = np.linspace(-22100)
r = z**2 + 1
x = r * np.sin(theta)
y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve')
ax.legend()

plt.show()

02 绘制Scatter


利用和上面的相同的绘制命令,将原来的plot3D修改成为 scatter即可。

from mpl_toolkits.mplot3d import axes3d

ax = plt.axes(projection='3d')

angle = linspace(02*pi*540)
x = cos(angle)
y = sin(angle)
z = linspace(0540)

ax.scatter(x,y,z, color='b')
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')

plt.show()
▲ Scatter 的例子

03 绘制3D Surface


(1) Ex1

▲ 3D surface例子
#!/usr/local/bin/python
# -*- coding: gbk -*-
#******************************
# TEST2.PY                     -- by Dr. ZhuoQing 2020-11-16
#
# Note:
#******************************

from headm import *
from mpl_toolkits.mplot3d import axes3d

ax = plt.axes(projection='3d')

x = arange(-550.1)
y = arange(-550.1)
x,y = meshgrid(x, y)
R = sqrt(x**2+y**2)
z = sin(R)

ax.plot_surface(x, y, z)
ax.set_xlabel('X Axes')
ax.set_ylabel('Y Axes')
ax.set_zlabel('Z Axes')

plt.show()

#------------------------------------------------------------
#        END OF FILE : TEST2.PY
#******************************
▲ 3D 绘制Surface
▲ 绘制3D球表面

(2) 举例

'''
***********
3D surface (color map)
***********

Demonstrates plotting a 3D surface colored with the coolwarm color map.
The surface is made opaque by using antialiased=False.

Also demonstrates using the LinearLocator and custom formatting for the
z axis tick labels.
'''


from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np

fig = plt.figure()
ax = fig.gca(projection='3d')

# Make data.
X = np.arange(-550.25)
Y = np.arange(-550.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

# Plot the surface.
surf = ax.plot_surface(X, Y, Z, cmap=cm.coolwarm,
                       linewidth=0, antialiased=False)

# Customize the z axis.
ax.set_zlim(-1.011.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

# Add a color bar which maps values to colors.
fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()
▲ 彩色表面绘制

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭