当前位置:首页 > > 可靠性杂坛
[导读]随机振动没有周期性,无规律可言,其波形在时间轴上无法数式化表示,不像正弦振动那样可以预测到下一步的运动状态。一般,振幅的概率密度函数近似符合正态分布。假定随机振动试验是平稳的各态历经的正态分布。通过上述假定,我们可以通过数学统计和概率论的方法来加以描述随机振动,离开这个假定,随机振动试验无从谈起。一般随机振动可通过下面4个域进行描述。

本文来源于振动试验学习笔记

***时差域(自相关函数、互相关函数)

给出频率成份和时间历程之间的信息。

(1)自相关函数Rxx(τ)(auto-correlation function):反应同一随机信号x(t)在时刻t和(t+τ)时的相互依赖关系,定义为两时刻随机变量的乘积的平均值。


当平均时间趋近于无穷大时,便得到自相关函数,其数学式和曲线如下所示,是时差τ的函数。

随机振动自相关函数曲线

上图中可以看出,Rxx(τ)越大,同一随机振动信号两时刻的信号相似性越好;Rxx(τ)越小,相似性越差。对于平稳随机振动,当τ趋近于无穷大时,两个信号越来越不相关,且其值趋近于μ2。μ= 0时,其也趋近于零。

随机振动试验中,很重要的一个函数,主要作用如下,

1 用于描述随机振动过程的总能量以及静态分量和动态分量。

当τ= 0的时候,即

2 用于检测随机振动过程中的确定性周期振动。

它可以把随机信号中的周期成份检测出来。因为任何周期信号在所有的时移上都有一定的自相关函数图形,当在自相关函数图上发现时差τ趋于无穷大,Rxx(∞)≠0,而有某种周期性,即说明随机振动信号中混有周期信号成份。

3 用于构建自功率谱密度函数,通过对自相关函数进行傅里叶变换即可得到,随机振动试验中很重要的一个分析方法,和PSD关系很大。

(2)互相关函数Rxy (τ)(cross-correlationfunction):反应两个随机信号x(t)、y(t)在时刻t和t+τ的相互依赖关系。

其数学式和曲线如下所示,是时差τ的函数。

随机振动互相关函数曲线

同样也是一个重要的函数,可以用于检测振动系统响应信号与激励信号的滞后时间,因为信号在系统中的时间滞后值,可以通过输入和输出的互相关函数中的峰值位置来确定,互相关函数最大值偏离坐标中心位置的时间坐标移动值,就是信号通过系统所需时间(图中τ0)。用于确定信号传递通道,如果一线性系统的输入通过几个通道输出,利用互相关函数的时移,可以确定那个通道为主要的。用于辨别随机信号中的成份,用于构建互功率谱密度函数(傅里叶变换)。


***频域(自功率谱密度函数、互功率谱密度函数)

(1)自功率谱密度函数Sxx(ω)将平稳随机振动过程x(t)的自相关函数Rxx(τ)的傅里叶变换定义为随机振动过程的自功率谱密度函数Sxx(ω)。其数学式如下所示,

其傅里叶逆变换即

下表列举了各类振动信号的概率密度、自相关、自功率谱等的曲线,供参考。


自功率谱密度函数是一个很有用的函数,描述随机振动的频率构成。x2(t)可以看成振动系统的“功和能”的度量,Rxx(τ)中含有x2(t)的成份,求出Sxx(ω)后可以得到振动能量在频率域的分布度量,因为时域和频域功率守恒(帕斯瓦定理)。

了解以上概念后,这里可以提出PSD(功率谱密度谱)的概念,在指定频率上,随机振动信号的功率谱密度为,

式中,可以看到在指定频率上的功率谱密度就是信号在Δf中的均方值的平均值。由于理想情况(平均时间无限长,滤波器的带宽无限窄)不可能实现,因此通常是用有限平均时间和有限带宽,即


将所有的Δf和对应的PSD值连续起来,便得到了频率范围内PSD的变化形式(曲线、直线、折线等图形),这图形称为功率谱密度的频谱,也就是随机振动试验最基本的试验内容。功率谱密度的单位是g2/Hz,即单位频率上的加速度值的平方,所以在随机振动试验中也称为加速度谱密度(ASD)。功率谱密度的频谱也称为加速度谱密度的频谱。单位有g2/Hz和m2/s4二种方式,两者的关系约为100倍,即1g2/Hz = 100m2/s4

至于PSD是怎么得到的,只要记住傅里叶变换得到的即可。具体来说,随机信号→幅值正态分布→均方值(平均功率)→帕斯瓦定理(功率守恒)→自相关函数(去除相位信息)→维纳-辛钦定理(一个信号的功率密度谱就是其自相关函数的傅里叶变换)

2)互功率谱密度函数Sxy(ω)它是互相关函数的傅里叶变换,其数学式如下,

其傅里叶逆变换即

它可以用来描述两随机振动过程之间的频率信息,不仅能提供按频率分布的能量大小,还能提供两信号之间的相互关系。从互功率谱密度中,可以得到系统的频响函数,也可以确定振动响应与对其激励的时间关系。


总结:

以上说明了随机振动的4个域(时域、幅值域、时差域、频域)描述中需要的几个主要概念,对初学者来说理解起来比较困难。简单来说,对于现场随机振动,通过上面这些概念对其定义和计算,进行傅里叶变换,得到随机振动试验需要的PSD和量级。然后通过振动控制仪模拟现场随机振动试验,重现其有效频率成份(频率范围)、功率谱密度(加速度谱密度)、总均方根加速度(有效值),振动台面的运动是随机振动的时间历程,该时间历程含有现场随机振动的同样成份(频率、能量),是其典型代表,但波形基本上不是同样的。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭