当前位置:首页 > 芯闻号 > 动态速递
[导读]今天,英特尔宣布,联想、罗技、梅赛德斯-奔驰和机器视觉传感器公司Prophesee加入INRC,共同探索神经拟态计算在商业用例上的价值。

今天,英特尔分享了英特尔神经拟态研究社区(INRC)的最新进展。该社区自2018年成立以来发展迅速,现已拥有100多名成员。英特尔今天宣布,联想、罗技、梅赛德斯-奔驰和机器视觉传感器公司Prophesee加入INRC,共同探索神经拟态计算在商业用例上的价值。此外,得益于英特尔神经拟态研究测试芯片Loihi的计算能力,英特尔还概括介绍了英特尔神经拟态研究社区更多的研究成果。

英特尔神经拟态计算实验室总监Mike Davies表示:“短短两年时间里,我们已经形成了一个充满活力的社区,其中包括来自世界各地的数百名研究人员,神经拟态计算在计算效率、速度和智能功能方面带来数量级提升的潜力让他们深受鼓舞。我们第一次看到有越来越多证明这种潜力的场景出现。我们计划与英特尔神经拟态研究社区的合作伙伴一起,在收获的洞察基础上,让这一新生技术实现广泛和颠覆性的商业应用。”

英特尔神经拟态研究社区再扩大!联想、奔驰加入

英特尔之所以创建英特尔神经拟态研究社区,是因为我们认为没有任何公司能够凭借一己之力有效释放神经拟态计算的全部潜力。通过与学术界、产业界和政府领域的一些知名研究人员进行合作,英特尔致力于解决神经拟态计算发展中的挑战,并在未来几年内将其从研究原型发展为能够引领产业的产品。

英特尔及其合作伙伴已经展示了在现实世界边缘用例中所实现的数量级提升,并且看到了在扩展工作负载之后,解决更大的计算问题所取得的早期进展。随着神经拟态计算的不断发展,英特尔和英特尔神经拟态研究社区还发现了神经拟态技术在现实世界中的各种潜在用例,例如:支持更高效且能够自适应的机器人技术;在大型数据库中快速搜索相似的内容;让边缘设备能够实时做出复杂规划和优化决策等。联想、罗技、梅赛德斯-奔驰和Prophesee的加入,以及英特尔神经拟态研究社区中现有的《财富》世界500强企业和政府实验室,证明神经拟态技术正在稳步成熟,将从学术实验室逐步走向产业应用。

通过对英特尔神经拟态系统上的应用进行持续开发、原型设计和测试,英特尔和英特尔神经拟态研究社区成员获得了越来越多的成果,并显示在各种工作负载中神经拟态计算都能带来性能的一致性提升。现有的研究结果——例如模仿人类嗅觉系统、将基于事件的触感引入机器人,结合英特尔研究院开放日上所介绍的新基准,勾勒出一副新的图景,即:神经拟态计算非常适合新兴的、具有商业相关性的仿生智能负载。

英特尔研究院开放日重点介绍的基准更新包括:

语音命令识别:埃森哲测试了在英特尔Loihi芯片上识别语音命令的能力和在标准图形处理单元(GPU)上识别语音命令的能力,发现Loihi不仅达到了和GPU类似的精度,而且能效提高1000倍以上、响应速度快200毫秒。通过英特尔神经拟态研究社区,梅塞德斯-奔驰正在探索如何将这些结果应用到现实用例中,例如在汽车中加入新的语音交互命令。

手势识别:传统的AI可以很好地处理大数据并识别成千上万个案例的模式,但它很难识别人与人之间细微的差异——比如我们用于交流的手势。埃森哲和英特尔神经拟态研究社区合作伙伴展示了Loihi在快速学习和识别个性化手势方面取得的切实进展。通过处理来自神经拟态相机的信息,只需几次曝光Loihi即可学习新手势。这可以应用于各种用例,例如与家庭中的智能产品进行交互或在公共场所的非接触式显示。

图像检索:零售行业的研究人员评估了Loihi对基于图像的产品搜索应用。他们发现,在保持相同精度水平的情况下,Loihi生成图像特征向量的效率比传统的中央处理单元(CPU)和GPU解决方案提升三倍多。这一结果是对英特尔今年早些时候发布的神经拟态研究系统Pohoiki Springs的相似度搜索结果的补充,表明Loihi在百万幅图像数据库中搜索特征向量的速度比CPU快24倍,且能耗低30倍。

优化和搜索:英特尔及其合作伙伴发现,Loihi解决优化和搜索问题的效率比传统CPU高1000倍、速度快100倍。优化问题,如约束满足可以在边缘端提供潜在价值,例如:让无人机能够实时规划并做出复杂的导航决策。同样的问题类型也可以扩展到复杂的数据中心负载,完成协助列车调度和物流优化等任务。

机器人技术:罗格斯大学和代尔夫特理工大学的研究人员展示了在Loihi上运行机器人导航以及微型无人机控制应用的演示。代尔夫特理工大学的无人机使用一个包含35个神经元,并且能演进的脉冲网络进行光流着陆(optic flow landing),频率超过250千赫兹。罗格斯大学发现,其Loihi解决方案所需的功耗比传统移动GPU低75倍,而性能却没有任何下降。在11月于2020机器人学习大会上发布的报告中,罗格斯大学的研究人员发现Loihi可以成功学习诸多OpenAI Gym的任务,其精度与深度行动者网络(Deep Actor Network)旗鼓相当,而能耗却比移动GPU解决方案降低了140倍。

此外,英特尔及其合作伙伴在英特尔研究院开放日活动上还展示了两个使用最先进技术的神经拟态机器人演示。与苏黎世联邦理工学院的研究人员合作,英特尔展示了Loihi如何自适应地控制水平跟踪无人机平台,实现最高可达20千赫兹的闭环速度以及200微秒的视觉处理延迟。与传统解决方案相比,这意味着效率和速度都提高了1000倍。为了解决神经拟态软件集成问题,英特尔和意大利理工学院(IIT)的研究人员在IIT的iCub机器人平台上演示了多种认知功能在Loihi上运行,其中包括基于快速、小样本学习(few-shot learning)的物体识别,对学习对象的空间感知,以及对人类互动的实时决策。

随着英特尔神经拟态研究社区的发展,英特尔将继续对这个独特的生态系统进行投资,并与成员合作以提供技术支持,探索神经拟态计算可以在哪些方面解决现实中的各种问题。此外,英特尔将继续从英特尔神经拟态研究社区汲取经验,并将其运用于公司即将发布的下一代神经拟态研究芯片的研发中。

关于英特尔神经拟态研究社区:

英特尔神经拟态研究社区是一个由世界各地的学术团体、政府实验室、研究机构和公司组成的生态系统,它们与英特尔合作,进一步推动神经拟态计算并开发创新的人工智能应用。有兴趣参加INRC并为Loihi开发产品技术的研究人员可以访问英特尔神经拟态研究社区网站。当前成员列表也可以在该网站上查看。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭