当前位置:首页 > 公众号精选 > Excelpoint世健
[导读]一种新的转换器接口的使用率正在稳步上升,并且有望成为未来转换器的协议标准。这种新接口JESD204诞生于几年前,其作为转换器接口经过几次版本更新后越来越受瞩目,效率也更高。

一种新的转换器接口的使用率正在稳步上升,并且有望成为未来转换器的协议标准。这种新接口JESD204诞生于几年前,其作为转换器接口经过几次版本更新后越来越受瞩目,效率也更高。

随着转换器分辨率和速度的提高,对于效率更高的接口的需求也随之增长。JESD204接口可提供这种高效率,较之其前代互补金属氧化物半导体(CMOS)和低压差分信号(LVDS)产品在速度、尺寸和成本方面更有优势。采用JESD204的设计拥有更快的接口带来的好处,能与转换器更快的采样速率同步。此外,引脚数的减少导致封装尺寸更小,走线布线数更少,从而极大地简化了电路板设计,降低了整体系统成本。该标准可以方便地调整,从而满足未来需求,这从它已经历的两个版本的变化中即可看出。自从2006年发布以来,JESD204标准经过两次更新,目前版本为B。由于该标准已为更多的转换器供应商、用户以及FPGA制造商所采纳,它被细分并增加了新特性,提高了效率和实施的便利性。此标准既适用于模数转换器(ADC)也适用于数模转换器(DAC),初步打算作为FPGA的通用接口(也可能用于ASIC)。


JESD204——它是什么?


2006年4月,JESD204最初版本发布。该版本描述了转换器和接收器(通常是FPGA或ASIC)之间数Gb的串行数据链路。在 JESD204的最初版本中,串行数据链路被定义为一个或多个转换器和接收器之间的单串行通道。图1给出了图形说明。图中的通道代表 M 转换器和接收器之间的物理接口,该接口由采用电流模式逻辑(CML)驱动器和接收器的差分对组成。所示链路是转换器和接收器之间的串行数据链路。帧时钟同时路由至转换器和接收器,并为器件间的JESD204链路提供时钟


图1. JESD204最初标准。


通道数据速率定义为312.5 Mbps与3.125 Gbps之间,源阻抗与负载阻抗定义为100 Ω ±20%。差分电平定义为标称800 mV峰峰 值、共模电平范围从0.72 V至1.23 V。该链路利用8b/10b编码,采用嵌入式时钟,这样便无需路由额外的时钟线路,也无需考虑相关的高数据速率下传输的数据与额外的时钟信号对齐的复杂性。当JESD204标准开始越来越受欢迎时,人们开始意识到该标准需要修订以支持多个转换器下的多路、对齐的串行通道,以满足转换器日益增长的速度和分辨率。

这种认识促成了JESD204第一个修订版的发布,即JESD204A。此修订版增加了支持多个转换器下的多路对齐串行通道的能力。该版本所支持的通道数据速率依然为312.5 Mbps至3.125 Gbps,另外还保留了帧时钟和电气接口规范。增加了对多路对齐串行通道的支持,可让高采样速率和高分辨率的转换器达到3.125 Gbps的最高支持数据速率。图2以图形表示JESD204A版本中增加的功能,即支持多通道。


图2. 第一版——JESD204A。


虽然最初的JESD204标准和修订后的JESD204A标准在性能上都比老的接口标准要高,它们依然缺少一个关键因素。这一缺少的因素就是链路上串行数据的确定延迟。对于转换器,当接收到信号时,若要正确重建模拟域采样信号,则关键是了解采样信号和其数字表示之间的时序关系(虽然这种情况是针对ADC而言,但DAC的情况类似)。该时序关系受转换器的延迟影响,对于ADC,它定义为输入信号采样边沿的时刻直至转换器输出数字这段时间内的时钟周期数。类似地,对于DAC,延迟定义为数字信号输入DAC的时刻直至模拟输出开始转变这段时间内的 时钟周期数。JESD204及JESD204A标准中没有定义可确定性设置转换器延迟和串行数字输入/输出的功能。另外,转换器的速度和分辨率也不断提升。这些因素导致了该标准的第二个版本——JESD204B。

2011年7月,第二版本标准发布,称为JESD204B,即当前版本。修订后的标准中,其中一个重要方面就是加入了实现确定延迟的条款。此外,支持的数据速率也提升到12.5 Gbps,并划分器件的不同速度等级。此修订版标准使用器件时钟作为主要时钟源,而不是像之前版本那样以帧时钟作为主时钟源。图3表示JESD204B版本中的新增功能。


图3. 第二个(当前)修订版——JESD204B。


在之前的JESD204标准的两个版本中,没有确保通过接口的确定延迟相关的条款。JESD204B修订版纠正了这个问题。通过提供一种机制,确保两个上电周期之间以及链路重新同步期间,延迟是可重现和确定性的。其工作机制之一是:在定义明确的时刻使用SYNC~输入信号,同时初始化所有通道中转换器最初的通道对齐序列。另一种机制是使用SYSREF信号——一种JESD204B定义的新信号。SYSREF信号作为主时序参考,通过每个发射器和接收器的器件时钟以及本地多帧时钟对齐所有内部分频器。这有助于确保通过系统的确定延迟。JESD204B规范定义了三种器件子类:子类0——不支持确定性延迟类1——使用SYSREF的确定性延迟子类2——使用SYNC~的确定性延迟。子类0可与JESD204A链路做简单对比。子类1最初针对工作在500MSPS或以上的转换器,而子类2最初针对工作在500MSPS以下的转换器。

除了确定延迟,JESD204B支持的通道数据速率上升到12.5 Gbps,并将器件划分为三个不同的速度等级:所有三个速度等级的源阻抗和负载阻抗相同,均定义为100 Ω ±20%。第一速度等级与JESD204和JESD204A标准定义的通道数据速率相同,即通道数据电气接口最高为3.125 Gbps。JESD204B的第二速度等级定义了通道数据速率最高为6.375 Gbps的电气接口。该速度等级将第一速度等级的最低差分电平从500 mV峰峰值降为400 mV峰峰值。JESD204B的第三速度等级定义了通道数据速率最高为12.5 Gbps 的电气接口。该速度等级电气接口要求的最低差分电平降低至360 mV峰峰值。随着不同速度等级的通道数据速率的上升,通过降低所需驱动器的压摆率,使得所需最低差分电平也随之降低,以便物理实施更为简便。

为提供更多的灵活性,JESD204B版本采用器件时钟而非帧时钟。在之前的JESD204和JESD204A版本中,帧时钟是JESD204系统的绝对时间参照。帧时钟和转换器采样时钟通常是相同的。这样就没有足够的灵活性,而且要将此同样的信号路由给多个器件,并考虑不同路由路径之间的偏斜时,就会无谓增加系统设计的复杂性。JESD204B中,采用器件时钟作为JESD204系统每个元件的时间参照。每个转换器和接收器都获得时钟发生器电路产生的器件时钟,该发生器电路负责从同一个源产生所有器件时钟。这使得系统设计更加灵活,但是需要为给定器件指定帧时钟和器件时钟之间的关系。


JESD204——为什么我们要重视它?


就像几年前LVDS开始取代CMOS成为转换器数字接口技术的首选,JESD204有望在未来数年内以类似的方式发展。虽然CMOS技术目前还在使用中,但已基本被LVDS所取代。转换器的速度和分辨率以及对更低功耗的要求最终使得CMOS和LVDS将不再适合转换器。随着CMOS输出的数据速率提高,瞬态电流也会增大,导致更高的功耗。虽然LVDS的电流和功耗依然相对较为平坦,但接口可支持的最高速度受到了限制。

这是由于驱动器架构以及众多数据线路都必须全部与某个数据时钟同步所导致的。图4显示一个双通道14位ADC的CMOS、LVDS和CML输出的不同功耗要求。


图4. CMOS、LVDS和CML驱动器功耗比较。


在大约150 MSP至200 MSPS和14位分辨率时,就功耗而言,CML输出驱动器的效率开始占优。CML的优点是:因为数据的串行化,所以对于给定的分辨率,它需要的输出对数少于LVDS和CMOS驱动器。JESD204B接口规范所说明的CML驱动器还有一个额外的优势,因为当采样速率提高并提升输出线路速率时,该规范要求降低峰峰值电压水平。

同样,针对给定的转换器分辨率和采样率,所需的引脚数目也大为减少。表1显示采用200 MSPS转换器的三种不同接口各自的引脚数目,转换器具有各种通道数和位分辨率。在CMOS和LVDS输出中,假定时钟对于各个通道数据同步,使用CML输出时,JESD204B数据传输的最大数据速率为4.0 Gbps。从该表中可以发现,使用CML驱动器的JESD204B优势十分明显,引脚数大为减少。


表1. 引脚数比较——200 MSPS ADC


业内领先的数据转换器供应商ADI预见到了推动转换器数字接口向JESD204(由JEDEC定义)发展的趋势。ADI自从初版JESD204规范发布之时起即参与标准的定义。迄今为止,ADI公司已发布多款输出兼容JESD204和JESD204A的转换器,目前正在开发输出兼容JESD204B的产品。AD9639是一款四通道、12位、170 MSPS/210 MSPS ADC,集成JESD204接口。AD9644和AD9641是14位、80 MSPS/ 155 MSPS、双通道/单通道ADC,集成JESD204A接口。DAC这方面,最近发布的AD9128是一款双通道、16位、1.25 GSPS DAC,集成JESD204A接口。

随着转换器速度和分辨率的提高,对于效率更高的数字接口的需求也随之增长。随着JESD204串行数据接口的发明,业界开始意识到了这点。接口规范依然在不断发展中,以提供更优秀、更快速的方法将数据在转换器和FPGA(或ASIC)之间传输。接口经过两个版本的改进和实施,以适应对更高速度和分辨率转换器不断增长的需求。展望转换器数字接口的发展趋势,显然JESD204有望成为数字接口至转换器的业界标准。每个修订版都满足了对于改进其实施的要求,并允许标准演进以适应转换器技术的改变及由此带来的新需求。随着系统设计越来越复杂,以及对转换器性能要求的提高,JESD204标准应该可以进一步调整和演进,满足新设计的需要。

原文转自亚德诺半导体



关于世健

亚太区领先的元器件授权代理商


世健(Excelpoint)是完整解决方案的供应商,为亚洲电子厂商包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。


世健是新加坡主板上市公司,拥有超过30年历史。世健中国区总部设于香港,目前在中国拥有十多家分公司和办事处,遍及中国主要大中型城市。凭借专业的研发团队、顶尖的现场应用支持以及丰富的市场经验,世健在中国业内享有领先地位。






点击“阅读原文”,联系我们
↓↓↓

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

随着科技的不断进步,数字信号处理技术在各个领域的应用越来越广泛。其中,DAC(Distance Amplitude Curve,距离-幅度曲线)曲线作为超声波检测中一种重要的分析工具,在无损检测领域发挥着重要作用。本文将...

关键字: 数字信号 DAC曲线

Type-C转换器作为连接电子设备的桥梁,已经广泛应用于手机、平板电脑、笔记本电脑等设备的充电和数据传输。然而,对于许多音乐爱好者来说,音质是他们非常关心的问题。因此,关于Type-C转换器是否会对音质产生影响的问题备受...

关键字: 电子设备 Type-C 转换器

随着科技的飞速发展,数字信号与模拟信号之间的转换成为众多电子系统不可或缺的一部分。其中,DAC(Digital-to-Analog Converter,数字/模拟转换器)作为将数字信号转换为模拟信号的关键模块,在音频设备...

关键字: 数字信号 dac模块

在数字信号处理和通信系统中,编码器扮演着至关重要的角色。它负责将原始数据转换为字符序列或二进制码序列,以实现信息的有效传输和处理。而在编码器的众多组成部分中,BAT(电池)信号不仅提供了编码器运行的必要电源,还承载着多种...

关键字: 数字信号 编码器 BAT

DS18B20是常用的数字温度传感器,其输出的是数字信号,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。

关键字: ds18b20 温度传感器 数字信号

需要将人类语音通过麦克风等设备转换成数字信号。这一步通常涉及信号处理技术,如滤波和分帧,以去除背景噪声和提高信号质量。

关键字: 语音识别 数字信号 信号处理

在汽车工业中,传感器与电子控制单元(ECU)之间的通信至关重要。为了优化这一通信过程,SAE(汽车工程师协会)推出了一种名为SENT(Single Edge Nibble Transmission)的新标准。SENT接口...

关键字: 传感器 电子控制单元 数字信号

e络盟为客户提供强大的新款Murata直流-直流转换器系列电源产品

关键字: 转换器 电源 桥式电路

​模数转换器,即Analog-to-Digital Converter,常称ADC,是指将连续变量的模拟信号转换为离散的数字信号的器件。大部分现实世界的电信号是模拟信号,ADC构建了模拟世界数字世界的联系。本文就模数转换...

关键字: 数模转换器 数字信号 模拟信号

Type-C转接头是一种可以将Type-C接口转换为其他类型接口的转换器,让设备可以使用不同类型的线缆或插头进行充电或数据传输。

关键字: type-c 转换器
关闭
关闭