当前位置:首页 > 公众号精选 > 松哥电源
[导读]同步BUCK降压变化器是非常经典的一种电源结构,其上、下管分别于工作在不同的状态,其中,上管工作在主开关状态,漏极的电流由漏极D流向源极S;下管工作在同步整流状态,漏极的电流由源极S流向漏极D。因为上、下管工作的状态不同,所以,它们的开关特性也不相同。




同步BUCK降压变化器是非常经典的一种电源结构,其上、下管分别于工作在不同的状态,其中,上管工作在主开关状态,漏极的电流由漏极D流向源极S;下管工作在同步整流状态,漏极的电流由源极S流向漏极D。因为上、下管工作的状态不同,所以,它们的开关特性也不相同。


通常,上管为硬开关工作状态,具有导通损耗和开关损耗;管为软开关工作状态,只有导通损耗,但是由于下管的寄生二极管在死区时间内会导通续流,因此,下管的寄生二极管在死区时间内具有导通损耗,同时具有二级管的反向恢复损耗。

 

功率MOSFET的寄生参数模型如图1所示,其中,G、D、S分别为封装好的器件外部的栅极、漏极和源极,G1、S1分别为内部器件的栅极、源极,LD为漏极的封装电感,LS为源极的封装电感,LG为栅极的封装电感,RG为内部的栅极电阻总和。


图1:功率MOSFET的寄生参数模型


 

电感中流过变化的电流时,其产生的感应电动势会抑制这种电流的变化。如图2左边所示,电感中流过的电流从A到B随时间变大,那么产生的感应电动势抑制电流从A到B的变大,感应电动势对应的方向为:上正下负。同样,若电感电流随时间降低,感应电动势对应的方向为:上


图2:电感的感应电动势


源极的封装电感LS同时在主功率回路和栅极的驱动回路中,上、下管由于漏极的电流方向不同,那么,LS对于开关特性的影响也不同,下面分别进行分析。

 

1、上管源极寄生电感对开关性能的影响

 

上管工作于主开关状态,漏极的电流由漏极D流向源极S,上管在开通的过程中,ID的电流从0开始增加,LS的电流也是从0开始增加,LS感应电动势VLS阻止其电流的增加感应电动势VLS方向为:上正下负


图3:上管源极寄生电感的开通特性及波形


VGS=VG1S1+VLS+VRG+VLG

其中,VGS:外加的G、S电压;

VG1S1:内部实际的G1、S1的电压

VRG:栅极驱动电阻的电压

VLG:栅极寄生电感的电压。


VG1S=VG1S1+VLS

 

因此,最内部VG1S1的电压低于VG1S:VG1S1<VG1S,相当于源极封装电感LS的感应电压降低Ciss的充电速度,也就是降低上管的实际开通速度,上管的开通时间变长,实际开通速度变慢,开通损耗增大。


同样,在关断的过程中,在LS上的感应电动势VLS的方向为:上负下正内部VG1S1的电压高于VG1S:VG1S1>VGSLS的感应电压导致上管的实际关断速度变慢,关断时间变长,关断损耗增大。



图4:上管源极寄生电感的关断特性


 

2、下管源极寄生电感对开关性能的影响

 

下管工作于同步状态,漏极的电流由源极S流向漏极D。上管关断后,下管在开通的过程中,ID的电流从0开始增加流过寄生的二极管,LS的电流也是从0开始增加,LS感应电动势VLS阻止其电流的增加,在LS上的感应电动势VLS的方向为:上负下正。


VG1S=VG1S1-VLS



在LS的电流增加到输出电流IO之前,开通下管,最内部VG1S1的电压高于VG1S:VG1S1>VG1S,相当于下管实际的开通速度变快,开通时间变短,寄生二极管导通时间变短,二极管导通损耗降低。只要在二极管增加到输出电感电流IO之前,开通下管,LS就有加速下管开通的作用。



图5:下管源极寄生电感的开通特性



如果二极管电流增加到输出电感电流IO之后、也就是二极管完全完成换流之后,再开通下管,LS电流基本上保持不变,LS感应电动势VLS为0,LS对下管的开通速度基本上没有影响。

 

相应的,下管在关断的过程中,在死区时间内,电流从沟道转移到寄生二级管,LS的电流维持不变,在这个时间段,对下管的关断速度几乎没有影响。如果下管关断的速度特别慢,在二极管的电流增加到等于输出的电感电流之前,上管开始开通,上管电流增加,下管电流减小,这时,下管的LS感应电压VLS上正下负压,导致VG1S1的电压突然降低,加速开断,从而减小上、下管的短路直通。


下管的LS感应电压VLS会随着负载电流的变化而变化。上、下管同时开通工作在短路直通状态,控制不好发生严重的短路直通,系统会有损坏的威胁,大多系统不会工作在这种方式。

 

实际的应用,除了封装电感LS,源极主功率回路的PCB的寄生电感LS-ex具有和LS同样作用,影响开关特性,因此,封装电感LS和源极主功率回路的PCB的寄生电感LS-ex之和,统称为:common source inductance。

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

增强负载能力:在变压器容量不变的情况下,较小的阻抗能够使得变压器能够承受更大的负载,提高其负载能力。

关键字: 功放变压器 内阻 变压器

本文中,小编将对隔离变压器予以介绍,如果你想对隔离变压器的详细情况有所认识,或者想要增进对隔离变压器的了解程度,不妨请看以下内容哦。

关键字: 变压器 隔离变压器

在这篇文章中,小编将对节约用电的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 节约用电 变压器

大型变压器是整个供电系统的核心设备,其出现故障将对供电的可靠性和系统的正常运行产生严重影响,及时发现和诊断其内部故障,是保证变压器及系统安全、经济运行的重要手段[1]。瓦斯保护是油浸式变压器的主保护之一,对变压器的匝间和...

关键字: 变压器 瓦斯 组分分析

在电子设备和实验室应用中,可调电源因其灵活的电压和电流调节功能而备受青睐。可调电源的最大电流输出是其重要的性能指标之一,对于保证电路的稳定性和安全性具有重要意义。本文将详细探讨可调电源如何实现最大电流输出,并介绍相关的技...

关键字: 电子设备 变压器 可调电源

TDK株式会社(东京证券交易所代码:6762)扩展了爱普科斯 (EPCOS) InsuGate系列 (B78541A) SMT变压器产品组合,推出两款新型元件。新元件采用锰锌 (MnZn) 铁氧体磁芯,尺寸紧凑,支持高工...

关键字: 变压器 电动汽车 耦合电容

在电力系统中,接地变压器是一种特殊的变压器,它承担着保护设备、人身安全和提高供电可靠性的重要职责。接地变压器通过巧妙的工作原理,实现了对中性点的有效接地,进而消除了不平衡电流对系统的影响。本文将详细解析接地变压器的原理及...

关键字: 接地变压器 变压器

本文将详细介绍电子元器件中的变压器(Transformer,简称TR)的原理、结构、分类、应用以及未来发展趋势。通过对变压器的深入解析,旨在帮助读者更好地理解其在电子电路中的作用和价值,为电子工程师在设计和应用中提供有价...

关键字: 变压器 电子电路 电磁感应

变压器电源的优点包括输出稳定、噪音小、价格相对较低、对于电磁干扰抵抗能力较强、稳定性较好、受负载波动影响小。

关键字: 开关电源 变压器 电源

开关电源和变压器的区别主要体现在工作原理、功能、结构和应用场景等方面。以下是它们之间的区别

关键字: 开关电源 变压器 通讯设备
关闭
关闭