当前位置:首页 > 公众号精选 > 嵌入式大杂烩
[导读]这篇文章来聊聊大名鼎鼎的GDB,它的豪门背景咱就不提了,和它的兄弟GCC一样是含着金钥匙出生的,在GNU的家族中的地位不可撼动。相信每位嵌入式开发工程师都使用过gdb来调试程序,如果你说没有用过,那只能说明你的开发经历还不够坎坷,还需要继续被 BUG吊打。


一、前言

这篇文章来聊聊大名鼎鼎的GDB,它的豪门背景咱就不提了,和它的兄弟GCC一样是含着金钥匙出生的,在GNU的家族中的地位不可撼动。相信每位嵌入式开发工程师都使用过gdb来调试程序,如果你说没有用过,那只能说明你的开发经历还不够坎坷,还需要继续被 BUG吊打。

我们都知道,在使用gcc编译时,可以使用-g选项在可执行文件中嵌入更多的调试信息,那么具体嵌入了哪些调试信息?这些调试信息是如何与二进制的指令之间进行相互交互?在调试的时候,调试信息中是如何获取函数调用栈中的上下文信息?

针对上面这些疑惑,道哥用两篇文章把这些底层最深处的问题彻底描述清楚,让你一次看过瘾。

第一篇文章,就是当前这一篇,主要内容是介绍GDB的底层调试原理,我们来看一下GDB是通过什么机制来控制被调试程序的执行顺序。

第二篇文章,我们选择一个体积小巧、五脏俱全的LUA语言来进行剖析,从源代码分析到函数调用栈,从指令集到调试库的修改,一网打尽。

内容比较多,看完本文需要的时间可能长一些,为了您的健康,不建议在处于蹲姿的时候阅读这篇文章。

二、GDB调试模型

GDB调试包括2个程序:gdb程序和被调试程序。根据这2个程序是否运行在同一台电脑中,可以把GDB的调试模型分为2种:

  1. 本地调试
  2. 远程调试

本地调试:调试程序和被调试程序运行在同一台电脑中

远程调试:调试程序运行在一台电脑中,被调试程序运行在另一台电脑中。

关于可视化调试程序并不是重点,它只是一个用来封装GDB的外壳而已。我们既可以用黑乎乎的终端窗口来手动输入调试命令;也可以选择集成开发环境(IDE),这个IDE中已经嵌入了器调试,这样就可以使用各种button来代替手动输入调试命令了。

与本地调试相比,远程调试中多了一个GdbServer程序,它和目标程序都是运行在目标机中,可能是一台x86电脑或者是一个ARM板子。图中的红线表示GDB与GdbServer之间通过网络或者串口进行通讯。既然是通讯,那么肯定需要一套通讯协议:RSP协议,全称是:GDB Remote Serial Protocol(GDB远程通信协议)。

关于通讯协议的具体格式和内容,我们不需要关心,只需要知道:它们都是字符串,有固定的开始字符('$')和结束字符('#'),最后还有两个十六进制的ASCII字符作为校验和,了解这么多就足够了。至于更多的细节,如果实在闲的XX可以瞄几眼,其实这些协议,就像社会中各种奇葩的规定一样,都是一帮砖家在厕所里想出来的。

在第二篇讲解LUA的文章中,我们会实现一个类似的远程调试原型。其中的通信协议也是字符串,直接把 HTTP 协议进行简化之后就拿过来使用了,十分清晰、方便。

三、GDB调试指令

为了完整性,这里把部分GDB调试指令贴一下,有感性认识即可。

另外,这里没有列举所有的指令,列出的指令都是常用的,比较容易理解。在讲解LUA的时候,我们会选择其中的某些指令进行详细的对比,包括底层的实现机制。

每一个调试指令都有很多的命令选项,例如断点相关的就包括:设置断点、删除断点、条件断点、临时停用启用等等。这篇文章的重点是理解gdb底层的调试机制,所以应用层的这些指令的使用方法就不再列出了,网络上的资源很多。

四、GDB与被调试程序之间的关系

为了方便描述,先写一个最最简单的C程序:

    
#include 
int main(int argc, char *argv[]){ int a = 1; int b = 2; int c = a + b; printf("c = %d \n", c); return 0;}

编译命令:

$ gcc -g test.c -o test

我们对可执行程序 test 进行调试,输入命令:

$ gdb ./test

输出如下:

在最后一行可以看到光标在闪烁,这是gdb程序在等着我们给它下达调试命令呢。

当上面这个黑乎乎的终端窗口在执行gdb ./test的时候,在操作系统里发生了很多复杂的事情:

系统首先会启动gdb进程,这个进程会调用系统函数fork()来创建一个子进程,这个子进程做两件事情:

  1. 调用系统函数ptrace(PTRACE_TRACEME,[其他参数]);
  2. 通过execc来加载、执行可执行程序test,那么test程序就在这个子进程中开始执行了。

补充一点:文中有时称之程序,有时称之进程。“程序”描述的是一个静态的概念,就是一堆数据躺着硬盘上,而“进程”描述的是动态的过程,是这个程序被读取、加载到内存上之后,在操作系统中有一个任务控制块(一个数据结构),专门用来管理这个进程的。

铺垫了半天,终于轮到主角登场了,那就是系统调用函数ptrace(其中的参数后面会解释),正是在它的帮助下,gdb才拥有了强大的调试能力。函数原型是:

#include long ptrace(enum __ptrace_request request, pid_t pid, void *addr, void *data);

我们先来看一下 man 中对这个函数的简介:

tracer就是调试程序,可以理解为gdb程序;tracee就是被调试程序,对应于图中的目标程序test。一般喜欢用-er和-ee来表示主动和被动的关系,例如:employer就是雇主(老板),employee就是苦逼的被雇佣者(打工人)。

ptrace系统函数是Linux内核提供的一个用于进程跟踪的系统调用,通过它,一个进程(gdb)可以读写另外一个进程(test)的指令空间、数据空间、堆栈和寄存器的值。而且gdb进程接管了test进程的所有信号,也就是说系统向test进程发送的所有信号,都被gdb进程接收到,这样一来,test进程的执行就被gdb控制了,从而达到调试的目的。

也就是说,如果没有gdb调试,操作系统与目标进程之间是直接交互的;如果使用gdb来调试程序,那么操作系统发送给目标进程的信号就会被gdb截获,gdb根据信号的属性来决定:在继续运行目标程序时是否把当前截获的信号转交给目标程序,如此一来,目标程序就在gdb发来的信号指挥下进行相应的动作。

五、GDB如何调试已经执行的服务进程

是否有小伙伴会提出这样一个疑问:上面被调试的程序test是从头开始执行的,是否可以用gdb来调试一个已经处于执行中的服务进程呢?答曰:可以。这就涉及到ptrace系统函数的第一个参数了,这个参数是一个枚举类型的值,其中重要的是2个:PTRACE_TRACEME和PTRACE_ATTACH<

在上面的讲解中,子进程在调用ptrace系统函数时使用的参数是PTRACE_TRACEME,注意橙色文字:是子进程调用ptrace,相当于子进程对操作系统说:gdb进程是我的爸爸,以后你有任何想发给我的信号,请直接发给gdb进程吧!

如果想对一个已经执行的进程B进行调试,那么就要在gdb这个父进程中调用ptrace(PTRACE_ATTACH,[其他参数]),此时,gdb进程会attach(绑定)到已经执行的进程B,gdb把进程B收养成为自己的子进程,而子进程B的行为等同于它进行了一次 PTRACE_TRACEME操作。此时gdb进程会发送SIGSTO信号给子进程B,子进程B接收到SIGSTOP信号后,就会暂停执行进入TASK_STOPED状态,表示自己准备好被调试了。

所以,不论是调试一个新程序,还是调试一个已经处于执行中状态的服务程序,通过ptrace系统调用,最终的结果都是:gdb程序是父进程,被调试程序是子进程,子进程的所有信号都被父进程gdb来接管,并且父进程gdb可查看、修改子进程的内部信息,包括:堆栈、寄存器等

关于绑定,有几个限制需要了解一下:不予许自我绑定,不允许多次绑定到同一个进程,不允许绑定1号进程。

六、偷窥GDB如何实现断点指令

大道理已经讲完了,这里我们通过设置断点(break)这个调试指令,来偷窥一下 gdb 内部的调试机制。还是以上面的代码为例子,这里再重新贴一下代码:

    
#include 
int main(int argc, char *argv[]){ int a = 1; int b = 2; int c = a + b; printf("c = %d \n", c); return 0;}

来看一下编译出来的反汇编代码是什么样的,编译指令:

gcc -S test.c; cat test.S)

这里只贴了一部分反汇编代码,只要能说明底层的原理就达到我们的目的了。

上面说到,在执行gdb ./test之后,gdb就会fork出一个子进程,这个子进程首先调用ptrace然后执test程序,这样就准备好调试环境了。

我们把源码和汇编代码放在一起,方便理解:

在调试窗口输入设置断点指令“break 5”,此时gdb做2件事情:

  1. 对第5行源码所对应的第10行汇编代码存储到断点链表中
  2. 在汇编代码的第10行,插入中断指令INT3,也就是说:汇编代码中的第10行被替换为INT3

然后,在调试窗口继续输入执行指令“run”(一直执行,直到遇到断点就暂停),汇编代码中PC指针(一个内部指针,指向即将执行的那行代码)执行第10行时,发现是INT3指令,于是操作系统就发送一个SIGTRAP信号给test进程。

此刻,第10行汇编代码被执行过了,PC指针就指向第11行了。

上面已经说过,操作系统发给test的任何信号,都被gdb接管了,也就是说gdb会首先接收到这SIGTRAP个信号,gdb发现当前汇编代码执行的是第10行,于是到断点链表中查找,发现链表中存储了第10行的代码,说明第10行被设置了断点。于是gdb又做了2个操作:

  1. 把汇编代码中的第10行"INT3"替换为断点链表中原来的代码。

  2. 把 PC 指针回退一步,也即是设置为指向第10 行。


然后,gdb继续等待用户的调试指令。

此刻,就相当于下一条执行的指令是汇编代码中的第10行,也就是源码中的第5行。从我们调试者角度看,就是被调试程序在第5行断点处暂停了下来,此时我们可以继续输入其他调试指令来debug,比如:查看变量值、查看堆栈信息、修改局部变量的值等等。

七、偷窥GDB如何实现单步指令next

还是以刚才的源代码和汇编代码为例,假设此时程序停止在源码的第6行,即汇编代码的第11行:

在调试窗口输入单步执行指令next,我们的目的是执行一行代码,也就是把源码中第6行代码执行完,然后停止在第7行。gdb在接收到next执行时,会计算出第7行源码,应该对应到汇编代码的第14行,于是gdb就控制汇编代码中的PC指针一直执行,直到第13行执行结束,也就是PC指向第14行时,就停止下来,然后继续等待用户输入调试指令。

八、总结

通过break和next这2个调试指令,我们已经明白了gdb中是如何处理调试指令。当然,gdb中的调试指令还有很多,包括更复杂的获取堆栈信息、修改变量的值等等,有兴趣的小伙伴可以继续深入跟踪。

后面我在写LUA语言中的调试库时,会更深入、详细的讨论这个问题,毕竟LUA语言更小巧、简单。我也会把LUA代码中如何设置PC指针的代码部分给小伙伴演示一下,这样我们对于一门编程语言的内部实现就会有更好的理解和掌握,也可能会录制一个视频,这样就能更好的讲解LUA语言中的内部细节。


如果这篇文章能给你带来小小的帮助,欢迎评论、转发、分享给你的朋友。

我会持续总结项目开发过程中的实战经验,相信不会让你失望的!


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

2024年4月11日,中国——意法半导体的ST25R100近距离通信(NFC)读取器芯片独步业界,集先进的技术功能、稳定可靠的通信连接和低廉的成本价格于一身,在大规模制造的消费电子和工控设备内,可以提高非接触式互动功能的...

关键字: 嵌入式 数据读取器 芯片

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

深圳2024年4月23日 /美通社/ -- 全球AI解决方案与工业级存储领导品牌宜鼎国际 (Innodisk)持续深化边缘AI布局,今(23)日发表全球首创"MIPI over Type-C"独家技术,让旗下嵌入式相机模...

关键字: AI 嵌入式 相机

为增进大家对嵌入式主板的认识,本文将对嵌入式主板以及嵌入式主板常见问题及其解决方法予以介绍。

关键字: 嵌入式 指数 主板

为增进大家对嵌入式系统的认识,本文将对嵌入式系统、嵌入式系统的特点予以介绍。

关键字: 嵌入式 指数 嵌入式系统

为增进大家对嵌入式的认识,本文将对嵌入式、嵌入式工作相关的内容予以介绍。

关键字: 嵌入式 指数 嵌入式技术

机器人操作系统(ROS)驱动程序基于ADI产品而开发,因此可直接在ROS生态系统中使用这些产品。本文将概述如何在应用、产品和系统(例如,自主导航、安全气泡地图和数据收集机器人)中使用和集成这些驱动程序;以及这样将如何有助...

关键字: 电机控制器 机器人 嵌入式

支持高达48V@5A的PD受电模式,达到目前USB PD最高标准。

关键字: 嵌入式 开发板

【2024年4月8日,德国慕尼黑讯】低碳化和数字化是当今时代人们面临的两大核心挑战,人类社会需要依靠创新和先进的技术,才能破除挑战、推动转型进程。在德国纽伦堡举办的2024国际嵌入式展(Embedded World 20...

关键字: 半导体 微控制器 嵌入式

TDK 株式会社(TSE:6762)进一步扩充 Micronas 嵌入式电机控制器系列 HVC 5x,完全集成电机控制器与 HVC-5222D 和 HVC-5422D,以驱动小型有刷(BDC)、无刷(BLDC)或步进电机...

关键字: 嵌入式 电机控制器 内存
关闭
关闭