当前位置:首页 > 半导体 > ROHM
[导读]~24款适用于工业设备及大型消费电子设备的-40V和-60V耐压产品全新上线~

全球知名半导体制造商ROHM(总部位于日本京都市)推出非常适用于FA和机器人等工业设备以及空调等消费电子产品的共计24款Pch MOSFET*1/*2产品,其中包括支持24V输入电压的-40V和-60V耐压单极型“RQxxxxxAT / RDxxxxxAT / RSxxxxxAT / RFxxxxxAT系列”和双极型“UTxxx5 / QHxxx5 / SHxxx5系列”。

ROHM开发出实现超低导通电阻的第五代Pch MOSFET

本系列产品作为ROHM拥有丰硕市场业绩的Pch MOSFET产品,采用了第五代新微米工艺,实现了业界超低的单位面积导通电阻*3。-40V耐压产品的导通电阻较以往产品降低62%、-60V耐压产的导通电阻较以往产品降低52%,有助于实现设备的节能性和小型化。

此外,通过优化元件结构并采用有利于改善电场集中问题的新设计,进一步提高了产品品质,并使普遍认为相互矛盾的产品可靠性和低导通电阻两者同时得到兼顾,从而有助于追求高品质的工业设备长期稳定运行。

本系列产品已于2020年8月份开始暂以月产100万个的规模投入量产(样品价格 200日元/个,不含税),产品可通过AMEYA360、SEKORM、Right IC、ONEYAC网售平台购买。前期工序的生产基地为ROHM Co., Ltd.(日本滋贺工厂),后期工序的生产基地为ROHM Integrated Systems (Thailand) Co., Ltd.(泰国)。

未来,ROHM将持续扩充封装阵容,以支持更广泛的应用。同时,还计划推进车载级产品的开发。除此以外,随着人们利用网络的“云端”工作模式和生活模式的快速发展,需要进一步丰富适用于需求日益扩大的数据中心服务器以及5G基站的产品阵容。ROHM在此次推出的第五代Pch MOSFET基础上,还将持续推进更高效率的Nch MOSFET*2开发工作,为减少应用产品的设计工时并提高可靠性和效率做出贡献。

近年来,在工业设备和消费电子设备等领域,采用高输入电压的电源电路来实现高级控制的客户越来越多,对于MOSFET产品,除了低导通电阻的要求之外,也表现出对高耐压性能与日俱增的需求。

MOSFET产品分为Nch与Pch两种,而高效率的Nch应用更为普遍,但在高边使用Nch MOSFET时,需要栅极电压高于输入电压,因此就存在电路结构变得更复杂的问题。而使用Pch MOSFET则可以用低于输入电压的栅极电压进行驱动,因此可简化电路结构,同时还有助于减轻设计负担。

在这种背景下,ROHM采用第五代微米工艺,成功开发出可支持24V输入、-40V/-60V耐压的低导通电阻Pch MOSFET。

ROHM开发出实现超低导通电阻的第五代Pch MOSFET

<新产品特点>

1.实现业界超低导通电阻

新产品采用ROHM第五代微米工艺技术,使栅极沟槽结构*4较ROHM以往产品更为细致精密,并提高了电流密度,从而在支持24V输入的-40V/-60V耐压Pch MOSFET领域中,实现了极为出色的单位面积低导通电阻。-40V耐压产品的导通电阻较以往产品降低62%,-60V耐压产品的导通电阻较以往产品降低52%,非常有助于应用设备的节能性与小型化。

2.采用新设计,品质显著提升

新产品充分运用了迄今为止积累的可靠性相关的技术经验和诀窍,优化了元件结构,同时采用新设计,改善了最容易产生电场集中问题的栅极沟槽部分的电场分布,实现了品质的大幅度提升。在不牺牲导通电阻的前提下,又成功提高了原本与之存在此起彼消关系的可靠性,从而可改善在高温偏压状态下的元件特性劣化问题,有助于追求更高品质的工业设备实现长期稳定运行。

3.丰富的产品阵容,有助于减少众多应用产品的设计工时并提高可靠性

此次推出的新产品包括-40V和-60V耐压的共24款产品,适用于FA设备、机器人以及空调设备等应用。未来将继续扩展更丰富的封装阵容,以支持工业设备领域之外的更广泛应用,同时还计划开发车载级产品。此外,采用新结构的新一代工艺不仅应用在Pch MOSFET产品上,还会应用在Nch MOSFET产品上并扩大其产品阵容,为更多的应用产品减少设计工时和提高可靠性贡献力量。

<产品阵容>

ROHM开发出实现超低导通电阻的第五代Pch MOSFET

ROHM开发出实现超低导通电阻的第五代Pch MOSFET

<应用示例>

■FA设备、机器人、空调设备等工业设备用风扇电机和电源管理开关

■大型消费电子设备用风扇电机和电源管理开关

ROHM开发出实现超低导通电阻的第五代Pch MOSFET

<术语解说>

*1) MOSFET(Metal-Oxide-Semiconductor Field Effect Transistorの略)

金属-氧化物-半导体场效应晶体管,是FET中最常用的结构。用作开关元件。

*2) Pch MOSFET / Nch MOSFET

Pch MOSFET:通过向栅极施加相对于源极为负的电压而导通的MOSFET。可用比低于输入电压低的电压驱动,因此电路结构较为简单。

Nch MOSFET:通过向栅极施加相对于源极为正的电压而导通的MOSFET。相比Pch MOSFET,漏源间的导通电阻更小,因此可减少常规损耗。

*3) 导通电阻

使MOSFET启动(ON)时漏极与源极之间的电阻值。该值越小,则运行时的损耗(电力损耗)越少。

*4) 沟槽结构

沟槽(Trench)意为凹槽。是在芯片表面形成凹槽,并在其侧壁形成MOSFET栅极的结构。不存在平面型MOSFET在结构上存在的JFET电阻,比平面结构更容易实现微细化。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭