当前位置:首页 > 通信技术 > 通信先锋
[导读]ZETA Advanced M-FSK是LPWAN领域的“5G”,5G实现了移动宽带领域的更高速率,Advanced M-FSK则实现了LPWAN领域的更广覆盖。

上一篇重点介绍了纵行科技研发的Advanced M-FSK调制技术的需求来源,基本原理和帧结构,得到了众网友的认可,意犹未尽,本文继续介绍Advanced M-FSK的一些重要理念。总结一句话:Advanced M-FSK是5G在LPWAN的领域延申,是LPWAN领域的“5G”。5G实现了移动宽带领域的更高速率,Advanced M-FSK则实现了LPWAN领域的更广覆盖。LoRa技术相比,具有更好的扩展性,可以接近兆级别的速率,极大的扩展了ZETA LPWAN的应用场景。

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

注:以上表格传输宽带为120kHz

 

这里再简单的回顾Advanced M-FSK的调制技术,如下表所示:

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

Advanced M-FSK调制技术参数包括:传输频域总带宽BW(不含保护带宽)、频点间隔SCS(SubCarrier space)、信道编码速率CR(Code Rate)。由频点间隔SCS和传输总带宽BW得到频域因子性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里(根据载波频点数所能传输的比特数);为了保证频点间正交,符号时长至少为性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里。根据频域因子、信道编码速率、传输频域总带宽和符号时长确定频谱效率和比特速率,具体推导过程为:

 

频率因子:

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

比特速率:

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

频谱效率:

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

Advanced M-FSK中的参数SCS把Advanced M-FSK和5G联系起来了。

 

 

Advanced M-FSK是5G在LPWAN领域的延申,是LPWAN领域的“5G”

 

5G 领域,随着带宽增加,时延需求提高,以及频带不断向上扩展从sub 3GHz扩展到sub 6GHz到毫米波。引入了可扩展的(Scalable)载波间隔参数,以适应各种场景。

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

其中支持表格如下,可以看出,SCS是随着传输速率增加而不断变大:

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

LPWAN应用场景以低频触发低速率应用为主,如抄表,标签信息等,数据量少要求覆盖远为主,所以Advanced M-FSK主要考虑覆盖远的要求,频带以sub 1GHz为主。假设传输带宽以120kHz为例,随着SCS变小,速率更小,同样可以获得更远的覆盖:

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

如上所述,5G的SCS通过2的幂次增长,不断获得更高的速率;而Advanced M-FSK则通过2的幂次负增长,不断的获得更远的覆盖。

 

下面用一张图形象的表达Advanced M-FSK与5G在不同方向与维度的比较,可以看出为了追求极高的速率和极致的覆盖,他们是向相反的方向走的:

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

总结表格如下:

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

综上所述,5G通过SCS实现高带宽下的高速率,ZETA Advanced M-FSK则通过SCS实现窄带宽的广覆盖,因此Advanced M-FSK是5G在LPWAN领域(即低速率和广覆盖)的补充和扩展,Advanced M-FSK是LPWAN领域的5G。

 

Advanced M-FSK相比LoRa具有更高频谱效率,同等带宽下速率更高

 

Advanced M-FSK在能量效率基础上,同样可以不断的增加频谱效率,从而增加速率,提升Advanced M-FSK场景应用范围。

 

Advanced M-FSK相比LoRa频域因子K具有更大的灵活性。Advanced M-FSK与5G类似,为了提升速率,增大频点间隔SCS,即使频域因子K变小。

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

LoRa的技术也是通过改变时域SF和带宽两个参数,选择合适的速率。如果带宽一定,选择SF越小,则速率越大,理论上选择SF=1,速率最高。但实际应用中,市场上并未出现支持SF=1的产品,SF至少要大于等于6,实际上原因是CSS信号在SF=1的情况下并不容易发送,即在短时间内发送完整的CSS信号很困难。而Advanced M-FSK对频域因子没有限制,所以Advanced M-FSK具有更好的扩展性。

 

Advanced M-FSK相比LoRa具有相位调制功能。Advanced M-FSK与5G类似,可以通过增加相位调制增加频谱效率。5G是QAM调制,即在幅度和相位上同时调制信息;Advanced M-FSK为了保证能量效率,只进行相位的调制。而LoRa是无法调制相位的,即如表1所示,LoRa只能发送CSS信号,此信号并没有任何其他调制信息,所以无法额外发送比特。下图是相位调制示意图,8PSK每个符号可以额外发送3比特。

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

下表示意不同带宽通过增加相位调制获得速率:

性能超越美国LoRa,纵行科技ZETA国产替代的底气在这里

从以上描述可以看出,Advanced M-FSK相比LoRa具有更高的频谱效率,在带宽上更容易扩展,可以在相位上调制信息。使Advanced M-FSK相比LoRa在sub 1GHz有限带宽内能满足对数据量要求更高的应用场景。如果在非授权更高频段内(比如2.4/5GHz),在保证终端的能量效率内,能满足兆级别数据的传输,因此可以应用到更广的工业场景中。

 

总结

 

本文在上一篇基础上,进一步通过5G的物理层基本重要参数SCS介绍了Advanced M-FSK技术,以及通过相位调制参数使Advanced M-FSK在有限带宽内能达到更高速率,相信大家也更进一步理解了Advanced M-FSK的精髓。LoRa技术是基于时域扩频技术发展起来的,在相对较高带宽时面临着种种限制,而Advanced M-FSK技术充分借鉴5G中创新性的基础概念SCS,打破了相对高带宽的限制,是LPWAN领域的5G。Advanced M-FSK无论在峰值速率还是覆盖范围的可扩展性方面,Advanced M-FSK都显著超过了LoRa技术,为行业提供了另外一种更低成本的LPWAN连接技术路径。

 

截止目前本系列文章仅介绍了Advanced M-FSK发送端设计理念,接收机方面设计如何?如果点赞较多,还有更详细分析。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭