当前位置:首页 > > 小麦大叔
[导读]PID是十分优美的控制算法,在工业控制应用地十分广泛,有的时候,无需知道系统模型的情况下,只要经验法去调整参数P、参数I和、参数D就可以到达期望的控制效果; 不过之前一直停留在把系统当作黑盒的方式进行调试,根据系统的时间响应判断是否达到期望的效果。

背景

PID是十分优美的控制算法,在工业控制应用地十分广泛,有的时候,无需知道系统模型的情况下,只要经验法去调整参数P参数I和、参数D就可以到达期望的控制效果;

不过之前一直停留在把系统当作黑盒的方式进行调试,根据系统的时间响应判断是否达到期望的效果;

以前参与无人机研发的时候,我们遇到一个问题,外部的扰动会把飞控激励起来造成机身的振动;

要解决掉的话,如果调飞控,又会对云台造成影响,最终航拍效果不太好;

我们尝试了很多工程方法,花了大量时间,都无法解决;这个项目看样子是要黄了;

后来飞控负责人和云台负责人激烈讨论,在白板上画伯德图,讲起相位裕度,幅值裕度;你的系统挪一下频谱,给我留出更多的余量;退一步海阔天空;

很神奇,后来问题就顺利解决了,项目顺利上线;

所以我感觉有必要对部分的知识点进行复习和简单的扫盲,因为尝试从数学角度对系统性能进行分析,会涉及到,系统建模,零极点,稳定性,基本差不多还给老师了,所以这里不会太深入。

线性时不变系统

通常来说,对于上述的零点和极点的分析,前提是系统需要是LTI系统(linear time-invariant system);这里简单介绍一下,对于这种系统有两点:1 线性;2 时不变;

线性

对于系统,任意输入X,最终系统输出得到Y

那么如果输入为K*X,那么最终输出为K*Y

例如:

系统增益为100;

即输入5可以得到输出5*100

那么输入5*K,可以得到输出5*K*100

叠加性

如果系统输入X可以得到输出结果f(X),如果X=a+b;

那么必须存在 f(X) = f(a) + f(b);

时不变

系统中,输入信号X,则得到输出信号Y,那么一个经过了延迟T的输入信号X,得到的输出信号也只是一个被延迟T的Y,而不会是其他值;

也就是说X(t-T)的输出就是Y(t-T)

什么是零点和极点?

在数字信号处理或者控制理论中,对于输入量和输出量,可以表示为:

如果对于进行拉普拉斯变换,那么可以得到:

对于连续系统,需要进行拉普拉斯变换变换,则从时域变换到频域;

对于离散系统,则需要进行z变换;

输入,输出以及传递函数的关系如下所示;

传递函数

零点

上述公式中 ,存在 使得 的解,即分母的解;

极点

上述公式中 ,存在 使得 的解,即分子的解;

举例

假设存在传递函数;

则零点为

极点为

系统的稳定的条件

从时域角度来讲:

系统的稳定与否却决于,当 ,系统输出 最终收敛,则认为系统是稳定的;具体如如下所示;

收敛

或者结论可以是这样子的;

稳定性判断:在零初始条件下,当且仅当 ,闭环系统的单位冲激响应为零时,系统是稳定的。

这里又引入了单位冲激响应什么是冲激响应?

顾名思义,冲激响应,一定是一个函数,可以想象一下,感觉形状和火柴及其相似;

这画面感很强,具体如下所示;

单位冲激响应

所以在这里我们将上面的 进行时间T进行离散化,具体如下图所示;

所以这里我们可以发现, 可以通过单位冲激响应进行幅值变化相位移动来表示

实际上,我们根本只需要让这些信号都输入系统,前面讲到过线性时不变

所以我们只需要让这些信号(1,2,3....n)中的任意一个信号进行归一化(单位冲激响应);

对齐到t=0时刻,再对输出乘以不同系数,延迟不同时间,就得到了所有的输出.

好像有点扯远了;

所以结论成立:在零初始条件下,当且仅当 闭环系统的单位冲激响应为零时,系统是稳定的;

从频域角度来讲:

对于高阶系统无法求时域响应的时候,这时候就需要从闭环传递函数的零极点进行分析,从而判断系统的稳定性;

通常来说:闭环系统的闭环传递函数的极点都在S平面的左半平面,则系统稳定;

所以极点为-2,-3,在左半平面,所以系统稳定;

这里和时域上稳定性的结论如何联系起来呢?

经过拉普拉斯反变换:

在这里不难发现,从时域的角度看,当 收敛;

所以闭环传递函数的极点位置在S平面的左半平面,系统稳定;

根据零极点判断系统稳定性的方法还有以下几种;

  1. 劳斯稳定性判据;
  2. 赫尔维茨稳定性判据;
  3. 伯德图稳定性判定法(频响);
  4. 奈奎斯特稳定性判据(频响);

结论

简单介绍了LTI系统,系统传递函数和传递函数的零极点定义,以及时域上系统稳定性和S域的稳定性之间的关联;

有点难,为了头发,暂时先到这里吧。

由于作者能力和水平有限,文中难免存在错误和纰漏,请不吝赐教。


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭