当前位置:首页 > > Excelpoint世健
[导读]冰箱及其他厨房电器对能源的要求较高,因此给离网型能源系统带来了巨大挑战。如今,经过改进的冰箱压缩机由无刷直流电动机或永磁同步电动机(PMSM)驱动,可满足相当高的能效等级。这种高能效可通过在无刷电机中使用基于逆变器的变速驱动器来实现。

冰箱及其他厨房电器对能源的要求较高,因此给离网型能源系统带来了巨大挑战。如今,经过改进的冰箱压缩机由无刷直流电动机或永磁同步电动机(PMSM)驱动,可满足相当高的能效等级。这种高能效可通过在无刷电机中使用基于逆变器的变速驱动器来实现。


冰箱压缩机设计利用数字信号控制器(DSC)实现高能效等级


老一代冰箱使用的是单相感应电机,这种电机无法自启动。一般可通过添加辅助绕组或罩极来解决这种问题。但是,由于没有其他用途,这两种方法在电机启动后都会浪费能量。ACIM电机面临的另一个挑战是,在达到目标转速之前,转矩输出都非常低。


相比之下,基于PMSM的压缩机非常高效,运行时也要安静得多。如有需要,这些压缩机还可以在启动和低速运行时提供更大的转矩。因此,PMSM或内部永磁电机正逐渐成为新冰箱的首选解决方案。


压缩机电机控制软件尤其面临挑战,因为在停机和快速重启期间由于冷却液回压高,因此要提供可靠的启动,需要平衡掉每次机械旋转中活塞运动的导致的震动。为了解决这些挑战,我们通过基于dsPIC33数字信号控制器(DSC)的冰箱压缩机参考设计为PMSM和IPM电机实现了独特的算法,旨在确保每次启动都安全可靠。转矩补偿算法会自动调整活塞运动的电机转速,以减小噪声和振动。


PMSM电机是另一种可行的方法,其原理是通过实施变速(变频)驱动器(VFD)来提高能源效率。使用单相交流感应电机无法实现该方法。VFD允许压缩机以维持冰箱内部恒定温度所需的最佳转速运行,从而节省能源。


使用磁场定向控制(FOC)算法可提供VFD和其他高级电机控制功能,例如动态启动和带自动恢复功能的失速检测。与FOC一同应用的还有单相并联电机电流检测技术,这项技术可降低总体BOM成本。


Microchip的冰箱压缩机参考设计提高了原型设计的速度,并有助于使用 dsPIC33 DSC打造兼具成本效益和创新性的设计。该设计同时支持内部永磁同步电机(IPMSM)和表面贴装永磁同步电机(SPMSM),适合与多种冰箱压缩机电机配合使用。软件算法可确保压缩机以高回压和低待机功耗实现可靠启动。借助单相并联电流检测技术,可实现无传感器FOC VFD。此设计支持一系列有助于提高效率的高级控制技术,包括过流保护、过压和欠压保护、转速误差和浪涌电流限制等功能,可帮助电机实现可靠的运行。


冰箱压缩机设计利用数字信号控制器(DSC)实现高能效等级

图1. dsPIC33 DSC参考设计的主要电路元件


冰箱压缩机设计利用数字信号控制器(DSC)实现高能效等级

图2. 冰箱压缩机开发板的尺寸

与实际冰箱中使用的电路板相同


dsPIC33 DSC具有多种功能,例如高级电机控制PWM、集成高速ADC、运算放大器和高速模拟比较器,可帮助PMSM实现经济高效的高性能FOC驱动器。这种较高的外设集成度有助于降低整个系统的BOM成本。


在业内,功能安全已成为确保安全可靠运行以保护最终用户利益的关键因素。我们的“功能安全即用型”dsPIC33 DSC提供众多安全硬件功能、功能安全配件以及经VDE和UL认证的IEC 60730 B类安全诊断库,能够轻松满足功能安全标准,实现可靠稳健的运行。


通过包含丰富保护功能、电机控制和应用程序源代码、用户指南和多个通信端口的成套示例设计缩短开发时间


使用FOC提供更平稳的转矩和更优秀的起停特性,使压缩机运行更安静、使用寿命更长


通过高性能dsPIC33内核和控制外设降低系统层面的BOM成本,实现无传感器FOC、辅助电源的直流-直流控制以及片上运放的单路电流检测


原文转自Microchip微芯


关于世健

亚太区领先的元器件授权代理商


世健(Excelpoint)是完整解决方案的供应商,为亚洲电子厂商包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。


世健是新加坡主板上市公司,拥有超过30年历史。世健中国区总部设于香港,目前在中国拥有十多家分公司和办事处,遍及中国主要大中型城市。凭借专业的研发团队、顶尖的现场应用支持以及丰富的市场经验,世健在中国业内享有领先地位。


免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭