当前位置:首页 > 原创 > 21ic专访
[导读]未来全新的IDM模式将会是英特尔发展的重要“法器”

今日,英特尔发布2020年Q4及全年财报,数据显示英特尔连续五年业绩创历史新高。具体来说,2020年英特尔全年营收779亿美元,同比2019年720亿元增长8%。

英特尔埋下的“伏笔”远比想象中多

英特尔在一周前正式宣布将在2021215日起任命帕特·基辛格(Pat Gelsinger)为新一任CEO(首席执行官)。此次财报沟通会上,现任CEO司睿博(Bob Swan)与未来新CEO帕特·基辛格(Pat Gelsinger)共同讨论了英特尔今后的工作重点。

英特尔埋下的“伏笔”远比想象中多

基辛格 ←      → 司睿博

“技术老兵”回归英特尔,代工催生新IDM模式

这次沟通会上,英特尔谈及了行业最为关注的制程问题。

在制程方面,司睿博透露,在过去6个月中7nm研发已取得重要进展,预计在2023年交付,届时7nm产品将在PC端首发。

另外,根据帕特·基辛格的透露,2023英特尔大部分产品将采用英特尔7nm技术,同时也会有部分产品采用外部代工。

除此之外,英特尔还将继续投资制程技术,投资和研发7nm以外的下一代产品。值得一提的是,帕特·基辛格还表示,英特尔高级研究员Glenn Hinton即将回归。

资料显示,Glenn Hinton曾任英特尔首席架构师,于三年前退休。他是2008Nehalem架构的功臣之一,该架构对英特尔的CPU体系影响颇深,为随后12年英特尔服务器及x86处理器奠定了基础。

英特尔埋下的“伏笔”远比想象中多

对于外部代工,帕特·基辛格表示,“在使用外部代工时,我们将在整个过程中发挥无可置疑的领导作用,目标是引领整个产业。”

而利用自研+外部代工,将产生新的IDM模式,英特尔将和代工厂共同选择设计和制造,控制供应链,从而共同盈利。

笔者认为,帕特·基辛格本身就是30年的技术老兵,再加上Glenn Hinton这位“老功臣”,无疑能够为高性能CPU项目带来更多新的机会。

帕特·基辛格坦言,“英特尔以前也经历过领先和落后的周期。曾经英特尔在多核上缓慢时,我曾参与其中,我们成功扭转了颓势,取得了领导地位。伟大的公司可以从困难时期恢复出来,并且会比以往任何时候都更强大、更具实力。现在就是英特尔的机会,我很期待成为其中一员。”

制程仅仅是规划一环,超异构计算才是未来

提到英特尔这家公司,很多人的关注点无疑是制程,但能否仅仅只关注制程这一参数?

“英特尔坚信实现领先性产品的重要性。制程技术非常重要,但同时封装技术、混合架构(CPUXPU)、内存、安全、软件都是非常重要的。实现产品领先性需要的是六大技术支柱。制程很重要,但不是说仅有制程就是足够的” ,司睿博如是说。

短短三句话,实际透露的是英特尔背后5年布的一个局。事实上,早在2015年开始,英特尔就提出了数据将改变未来计算格局的结论,并推动变革;在2017年正式确立“以数据为中心”的转型目标;至今已实现从CPU公司向多架构XPU公司的转型,成为业界首个覆盖四种主流芯片(CPU、独立GPUFPGA、加速器)的公司,并以XPU+oneAPI的独特实力引领科技产业的未来发展。

笔者曾多次强调,英特尔是目前在异构计算上拥有最全产品线的,可以说坐拥XPU+oneAPI英特尔是最接近超异构计算的。这是一个投入大、周期长的大山,实际上英特尔也在讲求“拆分”,通过这种方法“化整为零”,毕竟“一口不成胖子”,长线的布局才能实现如此庞大的目标。

英特尔埋下的“伏笔”远比想象中多

IDM自身特性与分解设计环环相扣

“化整为零”是行业趋之若鹜的一种现象,在巨头博弈中,就在这“一整”和“一零”下持续进行之中,这种思路就是Chiplet(小芯片),不过英特尔的这种设计更接近小芯片2.0

为什么称之为2.0版本?这一切的关键在于英特尔自身IDM的独特优势,英特尔拥有架构、硅技术、产品设计、软件、封装/组装/测试、制造的全部领域技术细节,通过英特尔IDM,在设计和研发产品中,可以实现在产品、流程和制造之间紧密的内部权衡,能够实现惊人的产品性能,这是竞争对手无法做到的。

值得一提的是,封装和互连是其中的关键:

封装方面,英特尔手握EMIB(高密度微缩2D)、Foveros(高密度微缩3D)和Co-EMIB(融合2D和3D)多个维度先进封装技术,还拥有最新的“混合结合(Hybrid Bonding)”封装技术,能够实现10微米及以下的凸点间距,提供更高的互连密度、带宽和更低的功率。

互连方面,英特尔拥有用于堆叠裸片的高密度垂直互连、实现大面积拼接的全横向互连(ZMV)、带来高性能的全方位互连(ODI)几种关键封装互连技术,这些无疑都是小芯片在拆分后重新组合的关键点。

在去年“架构日”上,英特尔就正式揭秘了“分解设计”这种思路,并且大部分被放在了英特尔2023年的产品路线图上。英特尔的分解设计是把原来一定要放到一个工艺下面去集成的单芯片方案转换成多节点芯片集成方案,再通过先进的封装技术,快速实现不同的产品。

举个例子来说,SoC芯片本身就是CPUGPUI/O等小部分集成的芯片,将这些小部分单独拆分后,将以前按照功能性来组合的思路转变为按照晶片IP来进行组合,能够实现最大的灵活性并让单独每个部分都发挥最强性能。

分解设计的优势是传统设计方式无法比拟的,分解设计可以满足市场需求的灵活性以及工程和制造的灵活性。除此之外,分解设计还可以有效减少芯片的Bug,所使用的IP都是经过验证的,不会因为CPUGPU之间互相纠缠产生新的Bug

帕特·基辛格表示:IDM模式意味着英特尔可以利用供应链来满足我们的客户,而我们的竞争对手则无法做到这一点。”

总结

笔者认为,未来全新的IDM模式将会是英特尔发展的重要法器,虽然不可否认英特尔曾经历过领先和落后的周期,但实际上小芯片2.0的产品都被放在了2023年的产品路线图中,诸多技术走向成熟必能引领行业新趋势。这就是近几年英特尔的CPU逐渐变为XPU的终极原因,XPU构建了异构计算,而小芯片2.0则也是推动英特尔从CPUXPU转型的秘密武器

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭