当前位置:首页 > > 技术解析
[导读]为增进大家对太阳能电池的认识,本文将对铜锢稼硒(CIGS)薄膜太阳能电池的两种制作方法予以介绍。

太阳能电池在生活中具有重要作用,例如马路上的太阳能路灯就采用了太阳能电池。为增进大家对太阳能电池的认识,本文将对铜锢稼硒(CIGS)薄膜太阳能电池的两种制作方法予以介绍。如果你对太阳能电池,抑或是对太阳能电池的制作方法具有需求,不妨继续往下阅读哦。

CIGS 薄膜太阳能电池的底电极 Mo 和上电极 n-Zn0 一般采用磁控溅射的方法,工艺路线比较成熟。最关键的吸收层的制备有许多不同的方法,这些沉积制备方法包括:

蒸发法、 溅射后硒化法、 电化学沉积法、 喷涂热解法和丝网印刷法等。 现在研究最广泛、制备出电池效率比较高的是共蒸发和溅射后硒化法,被产业界广泛采用。后几种属于非 空方法,实际利用还有很多技术问题要克服,下面分别论述。

一、电化学沉积法

现在一般是在溶解有化合物成分的电解质水溶液中,插入两个相对的电极,加一定 电压后,在负极基板上沉积出化合物薄膜。原料主要有氯化铜、三氯化锢、三氯化稼。电解液一般是亚硒酸和络合剂柠檬酸钠的水溶液,在镀 Mo 薄膜的钠钙玻璃衬底上,采 用恒电位电沉积方法制备出太阳能电池薄膜材料 CIS 和 CIGS 薄膜。电化学法是非常有 竞争力的方法之一,它的制备设备简单,对原料的纯度要求不高,对衬底的几何形状也没有特殊的限制,制备过程是在非真空条件下,原料的利用率比较高等等。这些优点, 促使其受到业界的重视。但是,该方法在制备材料过程中,薄膜的化学计量比非常难以控制,大规模的商业利用还有很多技术问题需要克服。

1. 喷涂热解法

通常把反应物以气溶胶(雾)的形式,一般是通过惰性气体引入反应腔中,在衬底上沉积制备吸收层薄膜。衬底通常要保持在高温状态,使化学原料发生裂解,形成薄膜。 制备 CIGS 薄膜通常是采用饱和的氯化铜,三氯化锢, 三氯化稼和 N-N 二甲基硒胺水溶 液,使该混合物喷射到已加热衬底上,使之热解反应沉积成 CIGS 薄膜。

2. 丝网印刷法

和上一种方法类似,将半导体组成元素的粉或盐类,做成糊状与烧结物一起和有机 溶剂混合。将制备的糊状物,用丝印的方法涂布在所需的衬底上,对衬底进行高温烧结,使其中的有机物挥发掉。现在发展的喷墨打印、流延方法等都属于此类的非真空方法。其最大的优点是材料利用率高,设备简单。 技术瓶颈是制备符合元素化学计量比的 CIGS 薄膜比较困难,并且容易出现二元或一元杂相,导致电池效率一般比较低。其溶剂一般需要具有化学挥发特性,对环境会造成一定的危害,需要增加环保设施。其制备薄膜的 表面平整度,也是一个需要克服的技术问题。

二、溅射后硒化方法

溅射硒化法是目前国际上普遍采用的方法。 由于可以在大面积玻璃上溅射金属合金层,成份可以精确控制;后硒化材料可以采用固态的硒源,避免了剧毒的 HrSe 气体,制 备的薄膜性能优良,大面积电池组件的效率可以达到 13-15%,非常适合大面积开发。 现在已经成为国际上普遍接受的产业化方法。

磁控溅射法制备金属预制层的基本原理可以归纳如下:溅射时通入少量惰性气体(氢 气),利用气体辉光放电产生氢离子 Ar+ Ar+在电场的加速作用下,离子能量得到提高, 加速飞向金属靶材,高能量离子轰击靶表面,溅射出 Cu、In、Ga 离子。溅射出的粒子沉积在基片表面,基片是在玻璃上沉积 Mo 形成的底电极,这样就形成铜锢嫁(CIG)金属预制层。 经过多年的发展,磁控溅射技术已经比较成熟,其工艺参数容易控制。通常是通过 控制工作气压、溅射功率、Ar 气流量、溅射顺序等参数,就可以制备出成分均匀、表面平整的 CIG 金属预置层,薄膜的成分控制比蒸发法要容易得多。制备出的 CIG 薄膜 比较致密,大面积均匀性好,成分可以精确控制。溅射法沉积速率高,材料利用率比较 高。 后硒化法最关键的一步, 是对制备的金属预制层进行高温硒化,形成 CIGS 吸收层。 现在研究较多的硒化方法,主要是在真空或氢气环境下使 Se 在高温条件下蒸发,产生 Se 蒸汽,使其和预制膜反应。这一方式可避免使用剧毒的 H2Se 气体,因此操作更加安 全,设备也相对简单。 溅射后硒化方法,已经在大面积制备 CIGS 电池方面表现出了明显的优势。成膜速 度高,制备的薄膜附着力好,成分容易控制,表面比较平整。Wurth Solar 和 Showa shell 制备的 120×60cm2 的组件效率超过 12%。本试验就是采用该方法进行 CIGS 大面积电 池的工艺研究。

以上便是此次小编带来的“太阳能电池”相关内容,通过本文,希望大家对CIGS太阳能电池制作方法具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭