当前位置:首页 > > 技术解析
[导读]为增进大家对CMOS的了解程度,本文将基于两点对CMOS予以阐述:1.CMOS集成电路特点,2.CMOS和TTL的优缺点介绍。

CMOS的重要性自然不再需要小编再多论及,在往期CMOS文章中,小编对CMOS故障、CMOS和CCD的区别等内容有所介绍。为增进大家对CMOS的了解程度,本文将基于两点对CMOS予以阐述:1.CMOS集成电路特点,2.CMOS和TTL的优缺点介绍。如果你对CMOS具有兴趣,不妨继续往下阅读哦。

一、CMOS集成电路的特点

1. CMOS集成电路功耗低

CMOS集成电路采用场效应管,且都是互补结构,工作时两个串联的场效应管总是处于一个管导通,另一个管截止的状态,电路静态功耗理论上为零。实际上,由于存在漏电流,CMOS电路尚有微量静态功耗。单个门电路的功耗典型值仅为20mW,动态功耗(在1MHz工作频率时)也仅为几mW。

2. CMOS集成电路工作电压范围宽

CMOS集成电路供电简单,供电电源体积小,基本上不需稳压。国产CC4000系列的集成电路,可在3~18V电压下正常工作。

3. CMOS集成电路逻辑摆幅大

CMOS集成电路的逻辑高电平“1”、逻辑低电平“0”分别接近于电源高电位VDD及电影低电位VSS。当VDD=15V,VSS=0V时,输出逻辑摆幅近似15V。因此,CMOS集成电路的电压电压利用系数在各类集成电路中指标是较高的。

4. CMOS集成电路抗干扰能力强

CMOS集成电路的电压噪声容限的典型值为电源电压的45%,保证值为电源电压的30%。随着电源电压的增加,噪声容限电压的绝对值将成比例增加。对于VDD=15V的供电电压(当VSS=0V时),电路将有7V左右的噪声容限。

5. CMOS集成电路输入阻抗高

CMOS集成电路的输入端一般都是由保护二极管和串联电阻构成的保护网络,故比一般场效应管的输入电阻稍小,但在正常工作电压范围内,这些保护二极管均处于反向偏置状态,直流输入阻抗取决于这些二极管的泄露电流,通常情况下,等效输入阻抗高达103~1011Ω,因此CMOS集成电路几乎不消耗驱动电路的功率。

6. CMOS集成电路温度稳定性能好

由于CMOS集成电路的功耗很低,内部发热量少,而且,CMOS电路线路结构和电气参数都具有对称性,在温度环境发生变化时,某些参数能起到自动补偿作用,因而CMOS集成电路的温度特性非常好。一般陶瓷金属封装的电路,工作温度为-55 ~ +125℃;塑料封装的电路工作温度范围为-45 ~ +85℃。

7. CMOS集成电路扇出能力强

扇出能力是用电路输出端所能带动的输入端数来表示的。由于CMOS集成电路的输入阻抗极高,因此电路的输出能力受输入电容的限制,但是,当CMOS集成电路用来驱动同类型,如不考虑速度,一般可以驱动50个以上的输入端。

8. CMOS集成电路抗辐射能力强

CMOS集成电路中的基本器件是MOS晶体管,属于多数载流子导电器件。各种射线、辐射对其导电性能的影响都有限,因而特别适用于制作航天及核实验设备。

9. CMOS集成电路可控性好

CMOS集成电路输出波形的上升和下降时间可以控制,其输出的上升和下降时间的典型值为电路传输延迟时间的125%~140%。

10. CMOS集成电路接口方便

因为CMOS集成电路的输入阻抗高和输出摆幅大,所以易于被其他电路所驱动,也容易驱动其他类型的电路或器件。

二、TTL与CMOS的优缺点

第一个也是最常被谈论的是功耗-TTL比CMOS消耗更多的电能。

这在某种意义上是正确的,TTL输入只是双极晶体管的基础,双极晶体管需要一些电流来打开它,输入电流的大小取决于内部的电路。当许多TTL输入连接到一个TTL输出时,这就成了一个问题,而TTL输出通常只是一个上拉电阻或一个驱动性能较差的高压侧晶体管。

另一方面,CMOS晶体管是场效应的,换句话说,栅极处的电场足以影响半导体通道的传导。理论上,除了栅极的小漏电流(通常为皮卡或毫安量级)外,不会产生电流。然而,这并不是说即使在更高的速度下,同样的低电流消耗也是正确的。CMOS芯片的输入具有一定的电容,因此上升时间有限。为了确保在高频下上升时间很快,需要一个大电流,在MHz或GHz频率下可以达到几安培。这种电流只在输入必须改变状态时才被消耗,而TTL的偏置电流必须与信号一起存在。

在输出方面,CMOS和TTL各有优缺点。TTL输出要么是图腾柱,要么是上拉。有了图腾杆,输出只能在轨道0.5V范围内摆动。然而,其输出电流远高于CMOS芯片。同时,CMOS输出可以与电压控制电阻器相比较,根据负载情况,可以在电源轨的毫伏范围内输出。然而,两个led的输出电流往往很有限。

由于其较小的电流要求,CMOS逻辑非常适合小型化,数百万个晶体管可以封装到一个小区域,而不需要过高的电流。

与CMOS相比,TTL的另一个重要优势是其耐用性。场效应晶体管依赖于栅极和沟道之间的薄氧化硅层来提供它们之间的隔离。这种氧化层厚度为纳米,击穿电压很小,即使在高功率fet中也很少超过20V。这使得CMOS对静电放电和过电压非常敏感。如果输入是浮动的,它们会慢慢积累电荷并引起输出状态的假变化,这就是为什么CMOS输入通常被上拉、下拉或接地。TTL在很大程度上不受这个问题的影响,因为输入端是一个晶体管基极,它的作用更像一个二极管,由于它的阻抗较低,对噪声不太敏感。

以上便是此次小编带来的“CMOS”相关内容,通过本文,希望大家对CMOS集成电路特点以及CMOS和TTL的优缺点具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭