当前位置:首页 > > 21ic电子网
[导读]本文介绍了电感式DC-DC的升压器原理,属于基础性质,适合那些对电感特性不了解,但同时又对升压电路感兴趣的同学。


本文介绍了电感式DC-DC的升压器原理,属于基础性质,适合那些对电感特性不了解,但同时又对升压电路感兴趣的同学。


想要充分理解电感式升压原理,就必须知道电感的特性,包括电磁转换与磁储能。我们先来观察下面这张图:


一文了解电感式DC-DC的升压器原理


这个图是电池对一个电感(线圈)通电,电感有一个特性——电磁转换,电可以变成磁,磁也可以变回电。当通电瞬间,电会变为磁并以磁的形式储存在电感内。而断电瞬磁会变成电,从电感中释放出来。


然而问题来了,断电后,回路已经断开,电流无处可以,磁如何转换成电流呢?很简单,电感两端会出现高压,如果电感线圈的自感系数很大,那么自感电动势就会很大,在很大的电势差之间的空隙,会产生很强的电场,甚至会击穿空气,发生放电现象。附近若有人,会对其造成一定危险,如果附近有易燃物质,就有发生着火的危险。


这样,我们也理解了电感的第二个特性——升压特性。当回路断开时,电感内的能量会以高电压的形式变换回电。


现在对以上的内容作出小结:下面是正压发生器,你不停地扳动开关,从图中节点处可以得到无穷高的正电压。电压到底升到多高,取决于你在二极管的另一端接了什么东西让电流有处可去。如果什么也不接,电流就无处可去,于是电压会升到足够高,将开关击穿,能量以热的形式消耗掉。


一文了解电感式DC-DC的升压器原理


然后是负压发生器,你不停地扳动开关,从图中节点处可以得到无穷高的负电压。


一文了解电感式DC-DC的升压器原理


上面说的都是理论,现在来点实际的电路,看看DC-DC升压电路的最小系统到底是什么样子。


一文了解电感式DC-DC的升压器原理


你可以清楚看到演变,电路中把开关换成了三极管,用固定频率的方波控制三极管的开关就能实现升压。不要小看这两个图,事实上,所有开关电源都是由这两个图组合变换而来的。


最后说一下磁饱合问题。我们已经知道电感可以储存能量,将能量以磁场方式保存,但能存多少,存满之后会发生什么情况呢?


最大磁通量,这个参数表示电感能存多少能量,根据这个参数你可以算出一个电感要提供n伏m安电流时必须工作于多高的频率下。


存满之后会如何?这就是磁饱合的问题。饱合之后,电感失去一切电感应有的特性,变成一纯电阻,并以热形式消耗掉能量。


一文了解电感式DC-DC的升压器原理

电感家族




应用举例:


升压芯片E50U,E50D,E50P(PL2303)是一种高效率、低纹波的DC-DC 变换器,内置MOS开关管。PL2303系列产品仅需要4个外围元器件,就可以将0.9V以上的电压变换升压到5V,经常用于电池供电的儿童玩具电路中。


一文了解电感式DC-DC的升压器原理

典型升压电路


由PL2303内部电路可知,这个VOUT脚的功能实际不是out,而是in,它检测VOUT的电压进行反馈。


一文了解电感式DC-DC的升压器原理

PL2303的内部结构


电感的选择:


PL2303的工作频率高达 300KHz,目的是为了能够减小外部电感尺寸, 只需要 4.7uH 以上的电感就可以保证正常工作, 但是输出端如果需要输出大电流负载(例如:输出电流大于 50mA),为了提高工作效率,建议使用较大电感。综合考虑,建议使用47uH、 寄生串联电阻小于 0.5Ω 的电感。如果需要提高大负载时的效率, 则需要使用更大电感值、更小寄生电阻值的电感。


用于整流的二极管对DC- DC 的效率影响很大,虽然普通的二极管也能使电路工作正常,但是会降低 5~10%的效率,所以建议使用正向导通电压低、反应时间快的肖特基二极管,如 1N5817、1N5819、 1N5822 等。


只要电源稳定,即使没有输入滤波电容,电路也可以输出低纹波、低噪声的电流电压。但是当电源距离 DC-DC电路较远,建议在 DC-DC 的输入端就近加上 10uF 以上的滤波电容,用于减小输出噪声。



焦耳神偷电路是一个简约的自激振荡升压电路,成本低、易制作。它可以榨干一节废旧干电池上的所有能量,即使是那些在其它电路中已经被认为没电的电池。在制作焦耳神偷电路时,一定要注意两个电感的方向相反。


一文了解电感式DC-DC的升压器原理

标准焦耳神偷电路


通常1.5V的干电池用完之后还会有1.1V左右的电压,说明此时电池内还有能量,只不过内阻已经变的很大,输出电流很微弱,已经无法驱动一般的电路,更无法点亮LED。而焦耳神偷电路可以通过磁感线圈产生高频脉冲电压,使LED导通,通过调整合适的参数,可以将电池电压升高10-100倍以上。


焦耳神偷原理:


1. 电流经L1流入BJT的基极,使BJT开始导通,集电极产生电流,集电极端的线圈L2产生变化磁通量,使基极线圈L1感应出电动势,并正向加在BJT的基极上。


2. 基极电流由于加了电动势而增大,使BJT集电极电流进一步增加,这个正反馈将持续,直到BJT饱和,基极电流的变化无法再引起集电极电流的变化。


3. 因为集电极电流不再变化,所以基极线圈L1不再产生更多的电动势,基极电流开始减小。


4. 集电极线圈上的电流开始减小,储存在磁芯上的能量开始崩溃,这在两个线圈上都产生了与原来方向相反的电动势,在基极线圈L1上,使BJT截止。集电极线圈L2上的感应电动势被传送给LED。要注意,此时L2感应出来的电动势远远高于电源电压,可以达到10到100倍以上。


5. LED导通后,电感开始放电,电流逐渐稳定,当小于LED导通电压时,右边支路断路,电流重新从对左边电感充电,如此反复。


下图是用两个色环电感构成的焦耳神偷电路:


一文了解电感式DC-DC的升压器原理

一文了解电感式DC-DC的升压器原理

一文了解电感式DC-DC的升压器原理

注意图中两个电感的方向相反


一节纽扣电池,点亮10个串联的LED。


一文了解电感式DC-DC的升压器原理

一文了解电感式DC-DC的升压器原理


来源:面包板社区

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭