当前位置:首页 > 公众号精选 > 21ic电子网
[导读]本文介绍了电感式DC-DC的升压器原理,属于基础性质,适合那些对电感特性不了解,但同时又对升压电路感兴趣的同学。


本文介绍了电感式DC-DC的升压器原理,属于基础性质,适合那些对电感特性不了解,但同时又对升压电路感兴趣的同学。


想要充分理解电感式升压原理,就必须知道电感的特性,包括电磁转换与磁储能。我们先来观察下面这张图:



这个图是电池对一个电感(线圈)通电,电感有一个特性——电磁转换,电可以变成磁,磁也可以变回电。当通电瞬间,电会变为磁并以磁的形式储存在电感内。而断电瞬磁会变成电,从电感中释放出来。


然而问题来了,断电后,回路已经断开,电流无处可以,磁如何转换成电流呢?很简单,电感两端会出现高压,如果电感线圈的自感系数很大,那么自感电动势就会很大,在很大的电势差之间的空隙,会产生很强的电场,甚至会击穿空气,发生放电现象。附近若有人,会对其造成一定危险,如果附近有易燃物质,就有发生着火的危险。


这样,我们也理解了电感的第二个特性——升压特性。当回路断开时,电感内的能量会以高电压的形式变换回电。


现在对以上的内容作出小结:下面是正压发生器,你不停地扳动开关,从图中节点处可以得到无穷高的正电压。电压到底升到多高,取决于你在二极管的另一端接了什么东西让电流有处可去。如果什么也不接,电流就无处可去,于是电压会升到足够高,将开关击穿,能量以热的形式消耗掉。



然后是负压发生器,你不停地扳动开关,从图中节点处可以得到无穷高的负电压。



上面说的都是理论,现在来点实际的电路,看看DC-DC升压电路的最小系统到底是什么样子。



你可以清楚看到演变,电路中把开关换成了三极管,用固定频率的方波控制三极管的开关就能实现升压。不要小看这两个图,事实上,所有开关电源都是由这两个图组合变换而来的。


最后说一下磁饱合问题。我们已经知道电感可以储存能量,将能量以磁场方式保存,但能存多少,存满之后会发生什么情况呢?


最大磁通量,这个参数表示电感能存多少能量,根据这个参数你可以算出一个电感要提供n伏m安电流时必须工作于多高的频率下。


存满之后会如何?这就是磁饱合的问题。饱合之后,电感失去一切电感应有的特性,变成一纯电阻,并以热形式消耗掉能量。


电感家族




应用举例:


升压芯片E50U,E50D,E50P(PL2303)是一种高效率、低纹波的DC-DC 变换器,内置MOS开关管。PL2303系列产品仅需要4个外围元器件,就可以将0.9V以上的电压变换升压到5V,经常用于电池供电的儿童玩具电路中。


典型升压电路


由PL2303内部电路可知,这个VOUT脚的功能实际不是out,而是in,它检测VOUT的电压进行反馈。


PL2303的内部结构


电感的选择:


PL2303的工作频率高达 300KHz,目的是为了能够减小外部电感尺寸, 只需要 4.7uH 以上的电感就可以保证正常工作, 但是输出端如果需要输出大电流负载(例如:输出电流大于 50mA),为了提高工作效率,建议使用较大电感。综合考虑,建议使用47uH、 寄生串联电阻小于 0.5Ω 的电感。如果需要提高大负载时的效率, 则需要使用更大电感值、更小寄生电阻值的电感。


用于整流的二极管对DC- DC 的效率影响很大,虽然普通的二极管也能使电路工作正常,但是会降低 5~10%的效率,所以建议使用正向导通电压低、反应时间快的肖特基二极管,如 1N5817、1N5819、 1N5822 等。


只要电源稳定,即使没有输入滤波电容,电路也可以输出低纹波、低噪声的电流电压。但是当电源距离 DC-DC电路较远,建议在 DC-DC 的输入端就近加上 10uF 以上的滤波电容,用于减小输出噪声。



焦耳神偷电路是一个简约的自激振荡升压电路,成本低、易制作。它可以榨干一节废旧干电池上的所有能量,即使是那些在其它电路中已经被认为没电的电池。在制作焦耳神偷电路时,一定要注意两个电感的方向相反。


标准焦耳神偷电路


通常1.5V的干电池用完之后还会有1.1V左右的电压,说明此时电池内还有能量,只不过内阻已经变的很大,输出电流很微弱,已经无法驱动一般的电路,更无法点亮LED。而焦耳神偷电路可以通过磁感线圈产生高频脉冲电压,使LED导通,通过调整合适的参数,可以将电池电压升高10-100倍以上。


焦耳神偷原理:


1. 电流经L1流入BJT的基极,使BJT开始导通,集电极产生电流,集电极端的线圈L2产生变化磁通量,使基极线圈L1感应出电动势,并正向加在BJT的基极上。


2. 基极电流由于加了电动势而增大,使BJT集电极电流进一步增加,这个正反馈将持续,直到BJT饱和,基极电流的变化无法再引起集电极电流的变化。


3. 因为集电极电流不再变化,所以基极线圈L1不再产生更多的电动势,基极电流开始减小。


4. 集电极线圈上的电流开始减小,储存在磁芯上的能量开始崩溃,这在两个线圈上都产生了与原来方向相反的电动势,在基极线圈L1上,使BJT截止。集电极线圈L2上的感应电动势被传送给LED。要注意,此时L2感应出来的电动势远远高于电源电压,可以达到10到100倍以上。


5. LED导通后,电感开始放电,电流逐渐稳定,当小于LED导通电压时,右边支路断路,电流重新从对左边电感充电,如此反复。


下图是用两个色环电感构成的焦耳神偷电路:


注意图中两个电感的方向相反


一节纽扣电池,点亮10个串联的LED。



来源:面包板社区

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

Holtek针对TWS耳机充电盒推出HT45F2440高整合型Flash MCU。耐压24V与最大1A的线性充电管理可保护充电盒在异常USB-C电压连接时不损坏,于正常电压时缩短充电时间,内建5µA低功耗同步升压器可持续...

关键字: MCU USB-C 升压器

AIGC时代给数据中心算力提出了新的挑战,为了实现更大规模的模型计算,数据中心需要更强大的算力芯片和更多的并行策略,这分别意味着更高的系统功耗和通信带宽。

关键字: 英飞凌 POL DC-DC 数据中心 GPU

现代功率系统需要高效且设计紧凑的稳压器。为了应对这一挑战,英飞凌面向服务器、AI、数据通信、电信和存储市场推出了TDA388xx系列产品。最新的12 A和 20 A同步降压稳压器采用快速恒定导通时间(COT)控制模式来优...

关键字: 英飞凌 DC-DC POL 同步降压稳压器

为增进大家对DC-DC的认识,本文将对DC-DC电源以及DC-DC电源设计经验予以介绍。

关键字: DC-DC 电源 指数

为增进大家对DC-DC的认识,本文将对LDO、DC-DC以及DC-DC和LDO的区别予以介绍。

关键字: DC-DC LDO 指数

为增进大家对DC-DC的认识,本文将对DC-DC以及DC-DC的PCB设计予以介绍。

关键字: DC-DC PCB 指数

为增进大家对DC-DC降压模块的认识,本文将对DC-DC降压模块的优势以及选择DC-DC降压模块需要考虑的点予以介绍。

关键字: DC-DC 降压模块 指数

为增进大家对DC-DC转换器的认识,本文将基于两点介绍DC-DC转换器:1、DC-DC转换器有哪些特点,2、DC-DC转换器模块电源如何选择。

关键字: DC-DC 转换器 指数

为增进大家对DC-DC转换器的认识,本文将对DC-DC转换器和LDO的区别予以介绍。

关键字: DC-DC 转换器 指数

可提供优质体验、创造全新商业模式的AI、5G、物联网等新技术,近几年的落地速度不断加快。上述新技术背后都需要有性能强大的数据中心提供支持,不过伴随着强大算力与传输功能而来的便是高能耗。英飞凌指出,庞大的能源消耗带来的不只...

关键字: 英飞凌 DC-DC
关闭
关闭