当前位置:首页 > > wenzi嵌入式软件
[导读]今天跟大家分享三种表驱动设计的方法,都非常的精妙,值得收藏和细品。


1、聊一聊

马上要过年了,在家 各种准备,忙得不可开交, 所以今天能坐下 来写写文 章是多么幸福的一件事呀。 好了,今天跟大家分享三种表驱动设计的方法,都非常的精妙,值得收藏和细品。

2、正文部分

1

表驱动的意义

对于表驱动法,bug菌应该在之前的文章中经常有提及,常规做法就是定义一张表,该表一般就是一个结构体数组,结构体中包含查询的数据和数据对应的处理办法,在使用过程中通过查表数据,然后找到对应的处理方法来实现不同处理过程。

从功能上来看,表驱动法跟switch-case查询控制流程是非常相识的,但是表驱动法的优势在于数据与处理分离,一个合适的表结构,当工程师们扩展功能仅仅只需要添加相应的表项即可,一般不需要再改动表处理部分。

如果只是简单的使用switch-case,大量的case分支对程序的复杂度是明显增加的,非常不便于查找、排错和维护。

然而目前表驱动的设计大部分人都认为只有结构体数组这种固定方式,其实对于表项的组织还有两种也是非常常用的,下面bug菌就一一跟大家介绍。

2

三种表驱动设计

1

静态结构体数组式构建

这种表项的组织方式是大家了解表驱动法最早接触的,也是前面介绍得最多的,其他两种表驱动都仅仅只是在此法的基础上对表项进行更加灵活的组织。 表驱动法设计主要是两个方面 : 1)对象数据设计;2)对象关系设计。 下面是一个简单的菜单表驱动示例,也算是大家最常用的。
#include 
#include 

typedef struct  _tag_Menu stMenu; 
struct  _tag_Menu
{ char * MenuName; void (*MenuPrepare)(void); int (*MenuMessage)(void); void (*MenuBack)(void); //下面省略了相关界面相关数据区域  };

stMenu sMenu[] = {
    {"Main UI",MainUIPrepare,MainUIMessage,MainUIBack},
    {"Sec UI1",SecUI1Prepare,SecUI1Message,SecUI1Back},
    {"Sec UI2",SecUI2Prepare,SecUI2Message,SecUI2Back},
    {"Thd UI1",ThdUI1Prepare,ThdUI1Message,ThdUI1Back},
    {"Thd UI2",ThdUI2Prepare,ThdUI2Message,ThdUI2Back}
   }; int currMenu = 0; int NextMenu = 0; int main(int argc, char *argv[]) { while(1)
 {
     NextMenu = sMenu[currMenu].MenuMessage(); //界面消息处理  if(NextMenu != currMenu) //需要进行界面切换  {
       sMenu[currMenu].MenuBack(); //进行界面退出保存  sMenu[NextMenu].MenuPrepare(); //进行新界面的初始化准备 currMenu =  NextMenu; //更新界面索引  }
 } return 0;
}
以后如果需要添加新的菜单界面只需要修改驱动表项部分即可,而流程控制部分基本改动不大。 然而这样的表设计,每次的删减都需要动到全局的静态结构体数据表,为了尽量不直接修改公共部分,这里。

2

链表式构建

上面的数组是一片连续的静态区域,然而为了更好的增加表构建的灵活度,这里我们采用链表等非必须连续的数据结构来进行表项的组织,新模块仅仅只需要在初始化过程中添加链表结构即可。 而该链表中每一项与前面的数组项类似,使用过程中只要遍历链表即可获得相应的接口来进行对应的处理。 当然链表也只是其中一种组织方式,其他更快的遍历数据结构也是合适的。

3

链接式构建

读过Linux或者uboot源码的小伙伴 这种方式 应该都有了解过,该方式也是对数组表的改进,数组表可以看做程序员人为的把表项组织起来。 所以为了尽量减少人为的干预,只需要按照规定的格式编码并进行标记交给编译器去组织即可,同样编译器也会提供相应的标记,比如表的起始地址和结束地址,这样控制流就可以根据这些地址进行查表并获得相关参数。 如下是uboot中的相应处理,供大家参考:
1、每个模块中的cmd表项添加形式 :


2、U_BOOT_CMD宏的实现 :


3、对表项的遍历过程实现 :


3、结束语

好了,本文到此结束!希望本文能够给你带来一些收获!

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭