当前位置:首页 > 公众号精选 > 21ic电子网
[导读]业界经常流行这么一句话:“有两种设计师,一种是已经遇到了信号完整性问题,另一种是即将遇到信号完整性问题”。

业界经常流行这么一句话:“有两种设计师,一种是已经遇到了信号完整性问题,另一种是即将遇到信号完整性问题”。固态硬盘作为一种高集成度的高时钟频率的硬件设备,信号完整性的重要性不言而喻。借着这句话本文主要跟大家聊下信号完整性的一些基本内容。

什么是信号完整性?通俗来讲,信号在互连线的传输过程中,会受到互连线等因素的相互作用而使得信号发生波形畸变的一种现象,这时可以说信号在传输中被破坏了,变得“不完整”。信号完整性没有一个唯一的规范定义,从广义上讲,指的是信号在高速产品中由互连线引起的所有问题。

高速数字系统中,信号完整性起着重要作用。如果信号完整性有问题,可能会造成电路无法正常工作。影响信号完整性的关键电气特性就是互连线的阻抗,它是解决信号完整性的方法核心。

1. 阻抗

电路中电流所起的阻碍作用叫做阻抗。阻抗单位为欧姆,常用Z表示,表达式是复数:

其中实部为电阻和虚部表示电抗(容抗和感抗)。为什么用复数?电阻代表对信号幅值的衰减,电抗代表对信号相位的改变。以下分别为电阻,电容,电感部分的阻抗:

1.1特性电阻

特性电阻是与传输线相关的概念,信号在传输线上的实际传输过程中,会受到传输线上寄生参数(如寄生电感、寄生电阻、寄生电容)的影响,特性阻抗就是综合传输线场景下跟这些寄生参数合成的阻抗。

用下图模型来表示单位长度的传输线:

此模型下的阻抗表达式为:

在实际的PCB应用中传输线的电阻部分,可以忽略不计,即上式中的R和G为0,PCB传输线特性阻抗的一般表达式:

L是单位长度传输线的固有电感,C是单位长度传输线的固有电容

传输线阻抗在PCB行业通常将传输线的特性阻抗简称阻抗。

1.2阻抗匹配

信号在传输线上传输过程中会受到传输线的阻抗,任何阻抗的突变都会引起信号的反射和失真,过度的反射和失真会引发信号完整性问题。阻抗匹配是指信号源或者传输线跟负载之间达到一种适合的搭配。所以说,阻抗匹配对于一个高速数字系统是十分重要的。阻抗匹配主要有两点作用,一是调整负载功率,一是抑制信号反射。

可以用水在管道流动来类比信号在传输线上传输,管道粗细不一致会导致在关节处损失水流的动能,同样的,传输线阻抗不匹配会造成电路能量严重浪费。
2. 反射

在上文中提到了因阻抗不匹配而引起信号反射,为了解释信号反射我们可以用光在不同介质中传播来形象的介绍,光从空气射向水面或者玻璃时,有一部分光被反射,另一部分光会折射进入另一种介质,如下图:



同样的,信号也一样,如果传输线的阻抗不一致,在阻抗跳变的地方,一部分能量继续传输,一部分能量会被反射回去,如下图:



反射系数的表达式为:

反射会造成信号出现过冲(Overshoot)、振铃(Ringing)、边沿迟缓(回勾现象)。过冲是振铃的欠阻尼状态,边沿迟缓是振铃的过阻尼状态。下图为信号反射的三种表现形式:



2.1过冲和下冲

过冲指的是第一个峰值或谷值超过设定电压值,下冲是指下一个谷值或峰值,对于上升沿来说,过冲是指最高电压;对于下降沿来说,过冲是指最低电压。如下图所示:



过冲严重时会引起保护二极管工作,导致过早的失效,严重时还会损坏器件。而过分的下冲,能够引起假的时钟或数据的错误,这样可能会给器件带来潜在的累积性伤害,缩短其工作寿命,从而影响产品的长期稳定性。一般信号的发送端的阻抗较低,信号接收端的阻抗较高,如果发送端的与接收端的阻抗不匹配,发送的信号会在发送端和接收端之间来回反射,从而导致信号的反射出现过冲和下冲。

解决过冲的一般方法是匹配,或叫端接( Termination)。匹配的中心思想是消灭信号路径端点的阻抗突变。

下图是没有终端电阻和有终端电阻的波形图对比:


2.2振铃

上面小节介绍了过冲和下冲,如果过冲和下冲反复就会出现振铃现象,过冲往往伴随有振铃,或者说,过冲是振铃的一部分。振铃产生的第一次峰值电压,就是过冲。为什么要将过冲和振铃分开来讲,是因为他们的危害不同,振铃除了具有过冲的危害之外还有它的波动可能会多次超过阈值判定电压造成误判,并且会急剧地增加功耗,影响器件寿命。下图是振铃产生的原因:



下面是振铃的波形的表现形式:



振铃现象的根本原因是由信号反射引起的,其本质仍然是阻抗不匹配,所以减小或者消除振铃的解决方式跟处理过冲和下冲无异,必须要进行阻抗匹配端接。

在实际的应用场景中,会遇到多种信号完整性问题,典型问题有如下几种:反射、串扰,电源/地噪,时序等。其中,发射和串扰是引起信号完整性问题的两大主要原因。
3. 串扰

在上面我们介绍了信号反射是因为传输线的阻抗突变导致的,而串扰是信号线间互感和互容引起的噪声,是由同一PCB板上的两条信号线与地平面引起的,原理是在高频时PCB上的任何两个器件或导线之间都存在互容和互感,当一个器件或一条信号线上的信号发生变化时,其变化会通过互容和互感耦合到其他器件或信号线,即串扰耦合。当耦合信号或串扰信号足够大时,接收串扰信号的信号线上就会出现信号完整性问题。

一个信号受到干扰信号的串扰影响会发生变形,让其眼图闭合,在工程中我们希望能够尽量张开的眼图,因为这样才能有足够的余量保证无误的传输数据,相反的,如果眼图闭合会使得余量变得很小而出现结果错误。



引起串扰的原因有很多,例如PCB布线的长度、间距、层叠、参考地平面的状况、端接方式、驱动/接受端的电电气特性等因素。解决方式也主要针对上面提到的这些因素来处理。

4. 信号完整性问题解决方法

在介绍如何解决信号完整性问题前首先回顾下引起信号完整性的因素,基本因素就是阻抗不匹配,然后是串扰,电源完整性,时序等。在实际的信号完整性分析中,需要对引发信号完整性的根源进行描述,例如:

a.信号上升沿过短

b.阻抗匹配不合理

c.PCB结构设计不合理

d.电源完整问题

... ...

以下简单汇总了常见的信号完整性问题,并列出了引起问题的原因和相应的解决方法:


来源:DapuStor

免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

21ic电子网

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

总阻抗(Total Impedance)是指在整个电路或系统中,所有元件对电流的阻碍作用的总和。它是交流电路中一个重要的参数,用于描述电路对交流电的阻碍程度。总阻抗由电阻、感抗和容抗三者组成,其中电阻是由导体本身的特性决...

关键字: 阻抗 阻抗计算

电压跟随器是一种输入输出电压相同的放大电路。这个电路的输入阻抗高,输出阻抗低,且电压增益为1。这意味着电压跟随器对输入电压信号的影响很小,输出电压与输入电压相等,输出电流可以比较大。

关键字: 电压跟随器 阻抗 电压增益

SI(信号完整性)研究的是信号的波形质量,而PI(电源完整性)研究的是电源波形质量, PI研究的对象是PDN(Power Distribution Network,电源分配网络),它是从更加系统的角度来研究电源问题,消除...

关键字: 信号完整性 电源完整性 PCB工程师

为增进大家对衰减器的认识,本文将对衰减器的使用注意事项、衰减器的主要用途,以及衰减器网络的特性阻抗测量方法予以介绍。

关键字: 衰减器 指数 阻抗

如今,由高频多相 DC/DC 转换器驱动的千兆赫处理器以千兆赫兹的速度与内存通信。在这些频率下,组件和印刷电路板 (PCB) 寄生阻抗会产生与频率相关的电压降、天线结构和 PCB 谐振,进而产生电磁干扰 (EMI)、信号...

关键字: 电磁干扰 (EMI) 信号完整性

虽然适当的大电流功率级布局在 DC/DC 应用中始终很重要,但在印刷电路板 (PCB) 布局期间注意稳压器信号路由比以往任何时候都更加重要。

关键字: 信号完整性 电源

阻抗匹配技术最早应用在电气工程领域,随后的发展使其应用不再局限于此,而是广泛应用在涉及能量从源端传输到负载端的领域之中,比如声学系统、光学系统以及机械系统。

关键字: 阻抗 能量 光学

在电子测试设备中,干簧继电器被广泛采用于切换不同路径的信号输入输出。在射频应用中的干簧继电器,器件管脚的优化是一个非常重要的因素,会直接影响射频信号的质量。在早些年30MHz已经算是高频的年代,继电器的管脚是否优化设计并...

关键字: 射频信号 管脚 阻抗 继电器

同学们,《静噪基础课程》本期继续开讲!上一章介绍的是产生电磁噪声的机制本节为你介绍如何抑制电源电压波动第3 章  噪声 问题复杂 化 的因素   第1章为什么需要EMI静噪滤波器第2章产生电磁噪声的机制第3章噪声问题复杂...

关键字: 噪声 阻抗

摘 要 :对于电子产品普遍存在信号完整性干扰问题的现状,以较为典型的振铃型干扰信号为对象,通过严格的信号完整性分析,研究了一种基于阻容特性匹配的方法。通过对振铃型干扰信号进行有效成分的优化,简单有效地改善信号波形,降低...

关键字: 振铃型干扰 信号完整性 阻抗匹配 数学模型 故障代价 传输路径阻抗分布
关闭
关闭