当前位置:首页 > 芯闻号 > 行业热点快阅
[导读]ADC是生活中的重要器件,采用ADC,能帮助我们改善一些设备等的性能。上篇文章中,小编对ADC伪差分输入等内容有所介绍。为增进大家对ADC的认识,本文将对高速ADC的选择以及应用予以解读。

ADC是生活中的重要器件,采用ADC,能帮助我们改善一些设备等的性能。上篇文章中,小编对ADC伪差分输入等内容有所介绍。为增进大家对ADC的认识,本文将对高速ADC的选择以及应用予以解读。如果你对ADC具有兴趣,不妨继续往下阅读哦。

高速ADC的进步,直接促使3G基站(如WCDMA ,TD-SCDMA,UMTS)接收(RX)和发送(TX)通路的性能改善。随着新基站设计要求低功率工作和小尺寸,对信号链路元件的热性能提出额外的要求。要求ADC低功率,高性能小尺寸。节省板空间的热耗。

根据终端用户要求,不同制造商所选择的RX通路发生基本的变化。单载波接收机通常采用双ADC取样来自信号信道解调的I和Q,通过单RX通路在中频IF(70MHz-140MHz)直接取样。只要两个ADC之间有足够隔离,采用双ADC才可能。

具有110dB信道隔离性能的双14位80Msps ADC

Linear 公司的低功率高速双ADC,具有-110dB交扰信道隔离和低功耗(每个通道仅444mW,222mW)。73dB SNR(信噪比)和85dB SFKR(无寄生动态范围)的信能,对于基站应用是理想的。除基站应用外,这些低功率双ADC对于其他通信和高端媒体图像处理设备也是适合的。

用于功放线性化的高速ADC

在TX通路,功效(PA)失真是使系统具有更多性能的限制因素,所以,采用不同的方法来线性化PA输出。采用高速ADC和快速数字信号处理方法,用一个反馈通路数字化预改变PA输出(图2)来补偿功放的非线性。

PA线性化的取样率依赖于被数字化的谐波数量和信号带宽。一些PA设计需要185Msps和12位分辨率的ADC。

Linear 公司的LTC2220-1是一款12位185MSPS ADC,具有67.5dB SNR 80dB SFDR、775MHz全功率带宽。这些特性对于功放线性化的数字预变化应用是理想的。对于蜂窝基站收发器间的微波链路也是理想的器件。

除ADC良好的AC性能外,最佳化的逻辑接口对低噪声也是重要的。输入输出可以是低EMI的差分LVDS或单端CMOS。一个分离的数字输出电源,允许CMOS输出摆幅范围0.5V~3.3V,这能匹配低电压DSP,使开关噪声最小。

图1 采用解调I和Q的接收器结构

高SF2R的正交解调器

对图1中双ADC之前的信号链路元件也有相同的要求。Linear公司新的、非常高线性度和低噪声I/Q解调器为高线性度和低燥声I/Q调制解调器为记性能接收机提供无线信号到基带的直接变频和IF变频(见图3)。LT5517 I/Q解调器具有23.5dBmIIp3(输入3阶截听点)、9.5dB噪声因数(在200MHz),这些性能适合检测微弱信号,基至在高干扰情况下。此性能导致SFDR超过80dB。LT5517集成有精确的0°和90°分相器,在40MHz~900MHz范围内提供精确RF信号的I(同相)和Q(90°相移)解调,直接到基带。

LT5517非常适合高性能无线基础架构接收器应用中的IF和RF解调。其他应用包括微基站、中继器单元、RFID读机和宽带固定无线接入。

LT5517包含一对匹配的高线性度混频器,带片上正交相位产生器和分相器。I和Q信号通路通常增益匹配到0.03dB,典型的相位失匹为0.7°,这导致高精度I和Q解调。差分I和Q输出具有小的DC偏移(典型值0.5mV,)而内置的130MHz低通滤波器能去除带外噪声。

内部正交分相器采用来自除2电路的本振(LO)。相应地,ZXLO输入口接收2倍 LO频率的信号,因而使得到RF口的LO漏电最小。另外,LT5517具有良好的口间RF漏电,这降低了外部RF滤波器要求。ZXLO输入仅需要-5dBm驱动电平,而且内部与50Ω匹配,因此,能提供一个简单的单端接口。

图2 用85MSPSADC数字预改变PA线性化

图3 单载波接收机的I/Q解调器

图4 低功率混频器有良好线性性能

RF有源混频器

LT5525具有片上RF输入变压器,并在RF和LO输入提供内部50Ω阻抗匹配元件,可以单端驱动这些输入,而不需用外部阻抗匹配元件,因此,便于采用和降低成本(见图4)。LT5525的IIP3为21dBm(在900MHz),噪声因数为14dB(转换增益为-2.6dB)。

LT5525和LT5526都工作在单电源(3.5V~5.3V),工作电流典型值为28mA。

低失真低噪声差分ADC驱动器

LT1993-2是一款低失真低噪声差分放大器,作为ADC驱动器(70MHz输入频率,800MHz -3dB带宽)。特别低的输入噪声和低失真分量,使LT1993-2成为驱动高速12位和14位ADC的理想器件。除额定的非滤波输出外,LT1993-2具有内置175MHz差分低通滤波器和另一对滤波输出,这在驱动高速ADC时,减少外部滤波元件。通过VOCM引脚可以容易地设置共模电压,这样,在很多应用中消除输出变压器或AC耦合电容器。

LT1993-2设计用于满足通信收发器应用的要求。它可以用作为差分ADC驱动器,一个通用增益单元或其他任何应用所需的差分驱动。

以上便是此次小编带来的“ADC”相关内容,通过本文,希望大家对高速ADC的选择与应用具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

换一批

延伸阅读

[行业热点快阅] 大佬带你看芯片,GPS芯片值得研究

大佬带你看芯片,GPS芯片值得研究

芯片是非常重要的电子器件,可以说,现代的高端电子设备都是建立在芯片的基础上的。上篇文章中,小编对语音芯片的相关内容有所阐述。为增进大家对芯片的认识,本文将对GPS芯片予以介绍。如果芯片是你想要了解的知识点,不妨继续往下阅读哦。...

关键字: GPS芯片 指数 芯片

[行业热点快阅] 你了解语音芯片吗?语音芯片如何烧录?有何应用?

你了解语音芯片吗?语音芯片如何烧录?有何应用?

芯片在诸多产品中都有所应用,如手机处理器芯片、蓝牙芯片、AI芯片等等。虽然我们可能对芯片的底层知识并不了解,但是对于芯片的作用,还总是能说出个一二三。为增进大家对芯片的认识,本文将对语音芯片如何录音、语音芯片如何烧录以及语音芯片的应用予...

关键字: 语音芯片 指数 芯片

[行业热点快阅] 选购蓝光芯片有何注意事项?芯片需要清洗吗?

选购蓝光芯片有何注意事项?芯片需要清洗吗?

芯片是我们非常熟悉的一个词汇了,因为我们每天都在使用芯片。不信?其实你在使用手机的时候,便在同手机内部的芯片打交道呢。为了增进大家对芯片的认识,本文将告诉大家如何选购蓝光芯片,并和大家一起探讨芯片的清洗工作。如果你对芯片具有兴趣,不妨继...

关键字: 蓝光芯片 指数 芯片

[行业热点快阅] 为什么使用光耦器件?光耦隔离有何注意事项?

为什么使用光耦器件?光耦隔离有何注意事项?

光耦在实际生活中具有很多应用,可以说,光耦应用广泛。那么,你有想过为什么在电路中要使用光耦器件吗?在做光耦隔离的时候,又要注意些什么呢?如果你对这些光耦问题不是特别了解,可以通过阅读本文来寻找答案哦。 一、电路中为什么要使...

关键字: 光耦 光耦隔离 指数

[行业热点快阅] 槽型光耦了解吗?如何检测槽型光耦是否正常工作?

槽型光耦了解吗?如何检测槽型光耦是否正常工作?

光耦的它的作用,在日常生活中的应用越来越多。对于光耦,其实很多朋友对它都还是比较熟悉的。但是,如果让你去检测一个光耦的好坏,你该如何去做呢?为增进大家对光耦的认识,本文将介绍如何检测槽型光耦是否是可以正常工作的。如果你对光耦具有兴趣,不...

关键字: 光耦 槽型光耦 指数

行业热点快阅

838 篇文章

关注

发布文章

技术子站

关闭