当前位置:首页 > 芯闻号 > 技术解析
[导读]水质测量光谱吸收光纤探头在很多场所是非常常见的,为了增进大家对水质测量光谱吸收光纤探头的认识,本文对水质测量光谱吸收光纤探头予以介绍。

水质测量光谱吸收光纤探头在很多场所是非常常见的,为了增进大家对水质测量光谱吸收光纤探头的认识,本文对水质测量光谱吸收光纤探头予以介绍。IFT-COD-UV200-10水质测量光谱吸收光纤探头光程长度10mm,也可以根据用户定制不同需求光程长度,IFT-COD-UV200-10水质测量光谱吸收光纤探头非常适合科研研究、紫外可见吸收测量、荧光吸收、环保领域仪器商集成等应用。

IFT-COD-UV200-10水质测量光谱吸收光纤探头底部采样高反射率光学材料,在深紫外波段200-400nm反射率高达95%以上,同时探头采样了316L不锈钢,探头底部反射端采用了蓝宝石石英保护窗口,具有抗腐蚀、耐磨性好,非常适合COD水质在线原位紫外吸收光谱测量。

光纤气体传感及传感网络的关键技术

光纤气体传感单元(气体吸收盒)

吸收型的气体传感器的一大优点是采用简单可靠的气体吸收盒作为气体传感单元。采用小型渐变折射率透镜, 可以设计衰减小(小于1dB), 稳定性好的气体吸收盒。而且只需要调换光源, 对准另外的吸收谱线, 可以用同样的系统来检测不同的气体。1997 年M .A .Mo rante 和G .Stewart 提出了一种改进型的光纤气体吸收盒。将原来的准直型的渐变折射率透镜改变为汇聚型, 这样, 发散的反射光不能够返回光路, 大大减少了相干噪声, 信号的信噪比也因此提高了5 倍。

光源及其相应的信号检测处理技术

早期的气体传感研究采用宽带光源配合光学滤波器得到窄带匹配光源, 测量精度不高。其后可调谐的半导体激光器被广泛应用于气体传感, 测量精度得到极大的提高, 但是过高的成本始终困扰着它的实用化。光纤激光器开始被用于气体传感。它的波长调节范围非常宽, 一般可达30 ~ 40nm , 用一个光源可能对应数个气体吸收峰, 即可以同时测量数种气体。而且, 利用光纤激光器的内腔气体吸收测量和利用光纤放大器的光纤有源腔的ring -down 腔技术可能将测量精度提高。

(1)窄带光源与谐波检测技术

Ⅳ -Ⅵ 族铅盐半导体激光器是最早用于气体传感的。它的波长为3μm ~ 30μm , 正好在气体吸收的基频频谱范围内,因此气体吸收效应明显高于近红外波段, 最小可探测灵敏度可到ppb(9-10)量级。但是由于它的波长范围超出了现在光纤的透过窗口, 在光纤中损耗太大, 不适合与用做光纤气体传感应用。也许将来的中红外光纤技术的发展, 可以利用这个波段的气体吸收谱进行高灵敏度气体测量。

Ⅲ -Ⅴ 族半导体激光器已经用于气体传感研究。它可以单模输出数毫瓦的能量, 波长范围已经覆盖大部分的气体吸收峰且与光纤透过窗口匹配,可以采用光纤气体测量技术。更重要的是它可以在室温下工作, 性能相当稳定, 与之配套的光电器件成本较低, 技术相对成熟, 适合于光纤化测量以及工业应用。

(2)宽带光源与梳状滤波器

对于甲烷和乙炔等具有梳状吸收峰的气体, 可用梳状滤波器与之匹配, 进行信号检测。宽带入射光可覆盖一族气体吸收峰, 通过气体吸收后, 光谱被调制为梳状。我们需要测量的是气体吸收引起的输出光功率变化。由于气体吸收峰窄, 因而相对光功率的变化也小, 测量精度不高。利用一个和气体吸收峰相匹配的梳状滤波器, 同时测量多个气体吸收峰, 气体吸收引起的相对输出光功率变化将会大大提高, 检测效率可得到改善。

梳状滤波器也可以用类似于窄带光源的波长锁定技术, 将滤波器透射波长锁定在气体吸收峰上。相对于上一种方案, 宽带光源(LED)比较便宜, 梳状滤波器对光源波长的稳定要求也不高。另外由于宽带光源相干长度小, 光纤接头处反射引起的干涉噪声大大低于半导体激光器光源系统。另一种可能的方案是用梳状的宽带光源, 直接与气体吸收峰对准, 可以得到类似的效果。

(3)光纤光源及有源腔气体检测技术

九十年代, 光纤有源腔为基础的气体检测技术是将气体传感单元(气体吸收盒)置于有源腔中, 通过调节增益, 使得腔的总损耗很小。由于光可以在低损耗腔来回传输而不衰减或衰减很慢, 这样光可以通过传感单元(气体盒)很多次, 相当于有效作用长度(气体盒长度)大大增加, 气体吸收的灵敏度也会提高几个数量级。这类方法是很重要的激光光谱分析技术,主要包括两类:Ring -down 腔光谱吸收检测技术以及激光内腔吸收检测技术。

以上是小编此次带来的关于“水质测量光谱吸收光纤探头”相关内容,通过本文,希望大家对水质测量光谱吸收光纤探头具备一定的认知,如果你喜欢本文,不妨持续关注我们网站哦,后续更加精彩!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭