当前位置:首页 > 电源 > 电源-能源动力
[导读]随着社会的快速发展,我们的全固态锂离子电池也在快速发展,那么你知道全固态锂离子电池的详细资料解析吗?接下来让小编带领大家来详细地了解有关的知识。全固态锂离子电池作为最具潜力的电化学储能装置,近年来受到广泛关注。随着循环性、安全性等综合技术指标的提升,固态二次锂离子电池应用市场将逐渐扩大,全固态锂离子电池有望成为下一代动力锂离子电池厂家主导技术路线。

随着社会的快速发展,我们的全固态锂离子电池也在快速发展,那么你知道全固态锂离子电池的详细资料解析吗?接下来让小编带领大家来详细地了解有关的知识。全固态锂离子电池作为最具潜力的电化学储能装置,近年来受到广泛关注。随着循环性、安全性等综合技术指标的提升,固态二次锂离子电池应用市场将逐渐扩大,全固态锂离子电池有望成为下一代动力锂离子电池厂家主导技术路线。

全固态二次锂离子电池的优点

近年来,随着电动汽车的兴起以及对可再生能源发电的大型储能设备的迫切需求,锂离子电池的研究再次升温,安全,大容量,大功率长寿命二次锂离子电池成为人们关注的焦点。作为锂离子电池的一种新形式,固态二次锂离子电池从根本上具有锂离子电池能量密度高的优点。此外,所有固态二次锂离子电池还具有以下优点:

(1)高安全性能:由于液体电解质中含有易燃的有机溶剂,当发生内部短路时温度突然升高,很容易引起燃烧甚至爆炸。必须安装能抵抗温度上升和短路的安全装置结构,这会增加成本。但仍无法完全解决安全问题。特斯拉(Tesla)自称是世界上最好的BMS,仅今年在中国就造成了两起ModelS的严重火灾事故。因此,期望所有基于无机固体电解质的固态锂二次电池都具有高安全性。

(2)高能量密度:目前市场上使用的锂离子电池的能量密度高达260Wh / kg,正在开发的锂离子电池的能量密度可以达到300-320Wh / kg。对于所有固态锂离子电池,如果将金属锂用作负极,则电池能量密度有望达到300-400Wh / kg,甚至更高。预计所有固态二次电池都将实现更高的功率密度。固体电解质使用锂离子作为单一载体,并且没有浓差极化,因此它可以在高电流条件下工作以提高电池的功率密度。

(3)循环寿命长:固体电解质有望在液体电解质的充放电过程中防止固体电解质界面膜的连续形成和生长以及锂枝晶刺穿隔膜的问题,这可能会大大改善循环性能和使用金属锂离子电池的使用寿命。

(4)工作温度范围宽:如果所有固态锂离子电池都使用无机固体电解质,则最高工作温度有望提高到300°C甚至更高。目前,需要提高大容量全固态锂离子电池的低温性能。电池的特定工作温度范围主要与电解质的高温和低温特性以及界面电阻有关。

(5)宽的电化学窗口:所有固态二次锂离子电池的电化学稳定性窗口都很宽,可以达到5V,适用于高压电极材料,有利于进一步提高能量密度。目前,基于氮化锂磷酸锂的薄膜锂离子电池可以在4.8V的电压下工作。

(6)具有柔性的优点:固体二次锂离子电池还具有结构紧凑,规模可调,设计灵活性大的特点。固态电池可以设计成厚度仅为几微米的薄膜电池来驱动微电子设备,也可以制成用于驱动电动汽车,电网储能和其他领域的大尺寸电池。在这些应用中,电池的形状也可以根据特定需要进行设计。

全固态锂离子电池关键材料研究

●聚合物固态电解质:高分子聚合物固体电解质(SPE),由于其相对,由聚合物基体(如聚酯,聚合酶和多胺等)和锂盐(如LiClO4,LiAsF4,LiPF6,LiBF4等)组成。高质量,轻便,良好的粘弹性和出色的加工性能引起了广泛的关注。

●氧化物固体电解质:根据材料结构,氧化物固体电解质可分为晶体和玻璃(无定形)两种。结晶电解质包括钙钛矿型,NASICON型,LISICON型和石榴石型等。玻璃氧化物电解质的研究热点是薄膜电池中使用的LiPON型电解质。

●氧化物晶态固体电解质:氧化物晶体固体电解质化学稳定性高,可以在大气中稳定存在,有利于所有固态电池的大规模生产。目前的研究重点是提高室温离子电导率及其与电极的关系。电极的相容性有两个方面。提高电导率最重要的方法是元素置换和异质元素掺杂。另外,与电极的相容性也是限制其应用的重要问题。

以上就是全固态锂离子电池的有关知识的详细解析,需要大家不断在实际中积累经验,这样才能设计出更好的产品,为我们的社会更好地发展。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭