当前位置:首页 > > 糖果Autosar
[导读]每个CAN网络都有所属的Channel,称之为Application Channel,如果在Real BUS的环境下要映射到相应的硬件接口单元及相应的Transceiver。

CANoe,全称叫CAN Open Environment,是德国Vector公司为汽车总线的开发而设计的一款总线开发环境,集合了网络监控、数据获取/记录、节点仿真、诊断、自动测试等功能。

1、CANoe工程的新建

打开CANoe软件,在工具栏的”File”中点击”New”,双击选择创建的模板 ,再保存创建的cfg工程文件。如下:

2、Channel Mapping

每个CAN网络都有所属的Channel,称之为Application Channel,如果在Real BUS的环境下要映射到相应的硬件接口单元及相应的Transceiver。下图为网络上的各个网络(Comfort和Powertrain),及其网络中的Can控制器节点和DBC文件。

通过Hardware-Channel Mapping实现逻辑上通道和物理通道的映射,当你发现trace上没有报文时,第一检查一下你通过DB9的接插件是否插在正确的硬件通道上了。

3、CAN DBC中报文及信号的属性

CAN通信中物理层中一帧由以下几个部分组成:
  • 报文ID
  • 报文数据
  • 报文长度
Identifier type 指定 CAN 报文标识符是 Standard 还是 Extended 类型。默认值为 Standard。标准标识符是 11 位标识符,扩展标识符是 29 位标识符。
Remote frame 将 CAN 报文指定为远程帧。
Start bit 指定数据的开始位。开始位是从报文数据的开头计数的最低有效位。开始位必须是 0 到 63 之间的整数。信号的起始位,一般来讲,主机厂在定义整车CAN总线通信矩阵时,其每一个信号都从其最低位开始填写,
Length (bits) 指定信号在报文中占用的位数。长度必须是 1 到 64 之间的整数。Data type 指定信号如何解释分配的位中的数据。从下列各项中选择:
  • signed(默认值)
  • unsigned
  • single
  • double

4、信号在报文中的Layout问题

CAN 报文中的比特流有两方面要注意,第一是字节序,第二是bit numbering。字节序也叫大小端,决定如何去解析一系列字节来组装成有意义的数据。即小端支持从低字节向高字节去排布信号。
即大端支持高字节向低字节去排布信号。
注意:字节内的位的重要性(Significant)的顺序是一定的,不随两种格式的变化而变化。
bit numbering,即报文中支持两种方式的计数方式:
  • 从右向左

这种情况的报文一般是Byte0_bit7的位最先被发送,然后是bit6,,,最后是Byte7_bit56位被发送。这种方式在汽车工业中是最通用的方式,为各大主机厂采用,在Vector的DBC中也按照这种排布方式去布局信号的index。
-从左向右
这种情况的报文一般是Byte0_bit0的位最先被发送,然后是bit1,,,最后是Byte7_bit63位被发送。相应地和上述两种bit numbering对应的就是两种message的Layout,
1)字节中的位序为从右到左

2)字节中的位序为从左到右

通常在DBC中选择Byte order时,可以选择以下任一选项:LE:其中字节顺序为 little-endian 格式 (Intel®)。在这种格式中,从开始位(最低有效位)到最高有效位(具有最高位索引)进行计数。例如,如果以 little-endian 格式打包数据的一个字节0x12(默认其他信号为0),并且开始位为 29,则数据位表类似于下图(从最低有效位到最高地址计数的 Little-Endian 字节顺序)所示。

则我们接收到的8字节的Can报文消息为:00 00 20 01 00 00 00 00,字节2和字节3的layou如下表所示:

Bytes 2 3
Hex 0x20 0x01
Bits 0100 0010 0000 0001

BE:其中字节顺序为 big-endian 格式 (Motorola®)。在这种格式中,从开始位(最低有效位)到最高有效位进行计数。例如,如果以 big-endian 格式打包数据的一个字节,并且开始位为 29,则数据位表类似于下图(从最低有效位到最低地址计数的 Big-Endian 字节顺序)所示。

则我们接收到的8字节的Can报文消息为:00 01 20 00 00 00 00 00,字节1和字节2的layou如下表所示:

Bytes 1 2
Hex 0x01 0x20
Bits 0000 0001 0010 0000
总结:Intel格式编码:信号的低位(lsb)将被放在低字节(LSB)的低位。信号的起始位就是低字节的低位,从低字节向高字节去排布信号。Motorola格式编码 :信号的低位(lsb)将被放在高字节(MSB)的低位。这样,信号的起始位就是高字节的低位,从高字节向低字节去排布信号。
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭