当前位置:首页 > 公众号精选 > SiP与先进封装技术
[导读]如果有人跟你说:“嗨,我做的芯片实现了100%自主可控!”等等,你先不急着崇拜(相信)他,请看完此文再说...首先,什么叫自主可控,最直观的理解就是当别人“卡脖子”的时候不会被卡住。集成电路产业通常被分为芯片设计、芯片制造、封装测试三大领域,参看下图:我们逐一进行分析,芯片设计主...

如果有人跟你说:“嗨,我做的芯片实现了100%自主可控!”等等,你先不急着崇拜(相信)他,请看完此文再说...

首先,什么叫自主可控,最直观的理解就是当别人“卡脖子”的时候不会被卡住。集成电路产业通常被分为芯片设计、芯片制造、封装测试三大领域,参看下图:

我们逐一进行分析,芯片设计主要从EDA、IP、设计三个方面来分析;芯片制造主要从设备、工艺和材料三个方面来分析;封装测试则从封装设计、产品封装和芯片测试几方面来分析。


    01   

芯 片 设 计


如何开始一款芯片设计呢?
首先要有工具(EDA),然后借助现有的资源(IP),加上自己的构思和规划就可以开始芯片设计了。这里,我们就从芯片设计工具EDA,知识产权IP,以及集成电路的设计流程来分析芯片设计。
1.1 EDA


EDA(Electronic Design Automation)电子设计自动化,常指代用于电子设计的软件。

曾经有人跟我说:“EDA有啥呀,不就是个工具嘛?”是啊,确实就是个工具,可是没这个工具,你啥也设计不了啊!

现在的大规模集成电路在芝麻粒大小的1平方毫米内可以集成1亿只以上的晶体管,这些晶体管之间的连接网络更是多达数亿个。当今主流的SoC芯片,其晶体管数量已经超过百亿量级。如果没有精准的,功能强大的EDA工具,怎么设计呢?

EDA是芯片设计的必备工具,目前,Synopsys、Cadence和Mentor(Siemens EDA)占据着超过90%以上的市场份额。在10纳米以下的高端芯片设计上,其占有率甚至高达100%。也就是说,现在研发一款10nm以下的芯片,没有以上三家的EDA工具几乎是不可能实现的。

下表所示是目前芯片设计中主流的EDA工具:

芯片设计分为设计、仿真、验证等环节,对应的EDA工具分为设计工具、仿真工具、验证工具等。设计工具解决的是模型的构建,也就是从0到1(从无到有)的问题,仿真和验证工具解决模型的确认,也就是1是1还是0.9或者1.1的问题。因此,从EDA开发的角度,设计工具的开发难度更大。此外,设计规模越大,工艺节点要求越高,EDA工具的开发难度也越大。国产EDA工具目前在一些仿真验证点工具上取得一些成绩,在模拟电路设计方面也初步具备了全流程工具,但在大规模集成电路设计上和三大厂商还有很大的差距,尤其在高端数字芯片设计流程上基本还是空白。
1.2 IP


IP(Intelligent Property)代表着知识产权的意思,在业界是指一种事先定义、经过验证的、可以重复使用,能完成特定功能的模块,IP是构成大规模集成电路的基础单元,SoC甚至可以说是基于IP核的复用技术。IP一般分为硬核、软核和固核。IP硬核一般已经映射到特定工艺,经过芯片制造验证,具有面积和性能可预测的特点,但灵活性较小;IP软核以HDL形式提交,灵活性强,但性能方面具有不可预测性;IP固核通过布局布线或利用通用工艺库,对性能和面积进行了优化,比硬核灵活,比软核在性能和面积上更可预测,是硬核和软核的折中。
下表为目前全球前10大IP提供商,可以看到中国有两家入围前十,但是两家市场份额加起来也仅有3%,而ARM一家就占据了40%以上的市场份额,美国的企业则占据了30%的市场份额,如果ARM被英伟达收购,基本上IP市场就是美国的天下了。此外我们也发现,全球最大的两家EDA公司Synopsys和Cadence,在IP领域也同样占据的第二、第三的位置。

下图所示为IP的种类,其中处理器占51%,接口IP占22.1%,数字类占8.1%,其他占18.8%,处理器类ARM一家独大,在接口类IP中,Synopsys是业界领导者。

我们需要考虑的是,在设计的芯片中那些IP是自主设计的,那些是外购的,这些外购的IP是否存在不可控因素?如果你设计的SoC仅仅是把别人的IP打包整合,那自主可控性就要大打折扣了。

下面,我们以华为麒麟980为例,了解一下芯片研发中的IP使用情况。

麒麟980芯片集成的主要部件有CPU、GPU(俗称显卡)、ISP(处理拍照数据)、NPU(人工智能引擎)和基带(负责通信)。

根据华为官方资料,ISP是华为自研,NPU是华为和寒武纪合作的成果,至于CPU(Cortex-A76)和GPU(Mali-G76)则是华为向ARM公司购买的授权,包括指令集授权和内核授权。

如果没有IP授权,还有没有可能自研麒麟980芯片,目前看来,没有 。


1.3 设计流程


芯片设计流程通常可分为:数字IC设计流程和模拟IC设计流程。

数字IC设计流程:芯片定义 → 逻辑设计 → 逻辑综合 → 物理设计 → 物理验证 → 版图交付。

芯片定义(Specification)是指根据需求制定芯片的功能和性能指标,完成设计规格文档。

逻辑设计(Logic Design)是指基于硬件描述语言在RTL(Register-Transfer Level)级实现逻辑设计,并通过逻辑验证或者形式验证等验证功能正确。

逻辑综合(Logic Synthesis)是指将RTL转换成特定目标的门级网表,并优化网表延时、面积和功耗。

物理设计(Physical Design)是指将门级网表根据约束布局、布线并最终生成版图的过程,其中又包含:数据导入 → 布局规划 → 单元布局 → 时钟树综合 → 布线

  • 数据导入是指导入综合后的网表和时序约束的脚本文件,以及代工厂提供的库文件。

  • 布局规划是指在芯片上规划输入/输出单元,宏单元及其他主要模块位置的过程。

  • 单元布局是根据网表和时序约束自动放置标准单元的过程。

  • 时钟树综合是指插入时钟缓冲器,生成时钟网络,最小化时钟延迟和偏差的过程。

  • 布线是指在满足布线层数限制,线宽、线间距等约束条件下,根据电路关系自动连接各个单元的过程。

物理验证(Physical Verificaiton)通常包括版图设计规则检查(DRC),版图原理图一致性检查(LVS)和电气规则检查(ERC)等。

版图交付(Tape Out)是在所有检查和验证都正确无误的前提下,传递版图文件给代工厂生成掩膜图形,并生产芯片。

模拟IC设计流程:芯片定义 → 电路设计 → 版图设计 → 版图验证 → 版图交付。

其中芯片定义和版图交付和数字电路相同,模拟IC在电路设计、版图设计、版图验证和数字电路有所不同。

模拟电路设计是指根据系统需求,设计晶体管级的模拟电路结构,并采用SPICE等仿真工具验证电路的功能和性能。

模拟版图设计是按照设计规则,绘制电路图对应的版图几何图形,并仿真版图的功能和性能。

模拟版图验证是验证版图的工艺规则、电气规则以及版图电路图一致性检查等。

这里,我们做一个简单的总结:

芯片设计:就是在EDA工具的支持下,通过购买IP授权 自主研发(合作开发)的IP,并遵循严格的集成电路设计仿真验证流程,完成芯片设计的整个过程。在这个过程中,EDA、IP、严格的设计流程三者缺一不可。

目前看来,在这三要素中最先可能实现自主可控的就是设计流程了。

下表列出了当前世界前10的芯片设计公司,供大家参考。



    02   

芯 片 制 造


芯片制造目前是集成电路产业门槛最高的行业,怎么看待门槛的高低呢,投资越高、玩家越少就表明门槛越高,目前在高端芯片的制造上也仅剩下台积电(TSMC)、三星(SAMSUNG)和英特尔(Intel)三家了。下面,我们分别从设备、工艺和材料三个方面来分析芯片制造,寻找我们和先进制造技术的差距。
2.1 设备


芯片制造需要经过两千多道工艺制程才能完成,每个步骤都要依赖特定设备才能实现。芯片制造中,有三大关键工序:光刻、刻蚀、沉积。三大工序在生产过程中不断重复循环,最终制造出合格的芯片。

三大关键工序要用到三种关键设备,分别是光刻机、刻蚀机、薄膜沉积设备。三大设备占所有设备投入的22%、22%、20%左右,是三种占比最高的半导体设备。

下面就以最为典型的光刻机和刻蚀机为例进行介绍并分析自主可控。
  • 光刻机

光刻机的原理其实像幻灯机一样,就是把光通过带电路图的掩膜(也叫光罩)Mask投影到涂有光刻胶的晶圆上。60年代末,日本尼康和佳能开始进入这个领域,当时的光刻机并不比照相机复杂多少。

为了实现摩尔定律,光刻技术需要每两年把曝光关键尺寸(CD)降低30%-50%。需要不断降低光刻机的波长λ。然而,波长被卡在193nm无法进步长达20年。后来通过工程上最简单的方法解决,在晶圆光刻胶上方加1mm厚的水,把193nm的波长折射成134nm,称为浸入式光刻。浸入式光刻成功翻越了157nm大关,加上后来不断改进的镜头、多光罩、Pitch-split、波段灵敏光刻胶等技术,浸入式193nm光刻机一直可以做到今天的7nm芯片(苹果A12和华为麒麟980)。EVU光刻机EUV极紫外光刻(Extreme Ultra-Violet)是一种使用极紫外(EUV)波长的新一代光刻技术,其波长为13.5纳米。由于光刻精度是几纳米,EUV对光的集中度要求极高,相当于拿个手电照到月球光斑不超过一枚硬币。反射的镜子要求长30cm起伏不到0.3nm,相当于北京到上海的铁轨起伏不超过1毫米。一台EUV光刻机重达180吨,超过10万个零件,需要40个集装箱运输,安装调试要超过一年时间。2000年时,日本尼康还是光刻机领域的老大,到了2009年ASML已经遥遥领先,市场占有率近7成。目前,最先进的光刻机也只有ASML一家可以提供了。国内的情况,上海微电子(SMEE)已经有分辨率为90nm的光刻机,新的光刻机也在研制中。

在集成电路制造中,光刻只是其中的一个环节,另外还有无数先进科技用于前后道工艺中。
  • 刻蚀机

刻蚀是将晶圆表面不必要的材质去除的过程。刻蚀工艺位于光刻之后。

光刻机用光将掩膜上的电路结构复制到硅片上,刻蚀机把复制到硅片上的电路结构进行微雕,雕刻出沟槽和接触点,让线路能够放进去。

按照刻蚀工艺分为干法刻蚀以及湿法刻蚀,干法刻蚀主要利用反应气体与等离子体进行刻蚀,湿法刻蚀工艺主要是将刻蚀材料浸泡在腐蚀液内进行刻蚀。

干法刻蚀在半导体刻蚀中占据主流,市场占比达到95%,其最大优势在于能够实现各向异性刻蚀,即刻蚀时可控制仅垂直方向的材料被刻蚀,而不影响横向材料,从而保证细小图形保真性。湿法刻蚀由于刻蚀方向的不可控性,在先进制程很容易降低线宽,甚至破坏线路本身,导致芯片品质变差。

目前普遍采用多重模板工艺原理,即通过多次沉积、刻蚀工艺实现需要的特征尺寸,例如14nm制程所需使用的刻蚀步骤达到64次,较 28nm提升60%;7nm制程所需刻蚀步骤更是高达140次,较14nm提升118%。

下图所示为多次刻蚀原理。

和光刻机一样,刻蚀机的厂商也相对较少,代表企业主要是美国的 Lam Research(泛林半导体)、AMAT(应用材料)、日本的TEL(东京电子)等企业。这三家企业占据全球半导体刻蚀机的94%的市场份额,而其他参与者合计仅占6%。其中,Lam Research 占比高达55%,为行业龙头,东京电子与应用材料分别占比20%和19%。

国内的情况,目前刻蚀设备代表公司为中微公司、北方华创等。中微公司较为领先,工艺节点已经达到5nm。在全球前十大晶圆企业中,中微公司已经进入其中六家,作为台积电的合作伙伴协同验证14nm/7nm/5nm等先进工艺。

基于此,如果目前在光刻机领域我们还无力做出改变,那么已经有一定优势的刻蚀机势必会成为国产替代的先锋。


2.2 工艺制程


芯片制造过程需要两千多道工艺制程,下面,我们按照8大步骤对芯片制造工艺进行简单介绍。

1. 光刻光学显影

光刻是经过曝光和显影程序,把光罩上的图形转换到光刻胶下面的晶圆上。光刻主要包含感光胶涂布、烘烤、光罩对准、 曝光和显影等程序。曝光方式包括:紫外线、极紫外光、X射线、电子束等。

2. 刻蚀(蚀刻)

刻蚀是将材料使用化学反应或物理撞击作用而移除的技术。干刻蚀(dry etching)利用等离子体撞击晶片表面所产生的物理作用,或等离子体与晶片表面原子间的化学反应,或者两者的复合作用。湿刻蚀(wet etching)使用的是化学溶液,经过化学反应达到刻蚀的目的。

3. 化学气相沉积(CVD)

CVD利用热能、放电或紫外光照射等化学反应的方式,将反应物在晶圆表面沉积形成稳定固态薄膜(film)的一种沉积技术。CVD技术在芯片制程中运用极为广泛,如介电材料(dielectrics)、导体或半导体等材料都能用CVD技术完成。

4. 物理气相沉积(PVD)

PVD是物理制程而非化学制程,一般使用氩等气体,在真空中将氩离子加速以撞击溅镀靶材后,可将靶材原子一个个溅击出来,并使被溅击出来的材质如雪片般沉积在晶圆表面。

5. 离子植入(Ion Implant)

离子植入可将掺杂物以离子型态植入半导体组件的特定区域上,以获得精确的电特性。离子先被加速至足够能量与速度,以穿透(植入)薄膜,到达预定的植入深度。离子植入可对植入区内的掺质浓度加以精密控制。

6. 化学机械研磨(CMP)

化学机械研磨技术具有研磨性物质的机械式研磨与酸碱溶液的化学式研磨两种作用,可以使晶圆表面达到全面性的平坦化,以利后续薄膜沉积。

7. 清洗

清洗的目的是去除金属杂质、有机物污染、微尘与自然氧化物;降低表面粗糙度;几乎所有制程前后都需要清洗。

8. 晶片切割(Die Saw)

晶片切割是将加工完成的晶圆上一颗颗晶粒裸芯片(die)切割分离,便于后续封装测试。


虽然不同的Foundry厂的流程大致相同,但不同的工艺控制能力造就了各厂家在先进制程上的区别,随着制程进入5nm,能够量产的芯片制造商就屈指可数了,目前能够量产5nm芯片的只有TSMC和SAMSUNG。两千多道工艺制程中隐藏着Foundry的无穷的智慧和雄厚的财力,并不是说有了先进的设备,就能造出合格的芯片。虽然先进制程是技术发展的方向,我们也不能忽视成熟制程。成熟制程依然有很大市场份额。下图是按成熟制程(节点≥40nm)产能排序的全球晶圆代工厂商Top榜单。


可以看出,成熟制程产能排名前四的厂商分别为:台积电(市占率28%),联电(13%),中芯国际(11%),三星(10%)。成熟制程在2020年非常火爆,产能严重短缺,这给各大晶圆代工厂带来了巨大的商机。而从2021年的产业发展形势来看,这种短缺状况在近期内还难以缓解。


2.3 材料


生产集成电路的材料有成千上万种,我们就以最为典型的硅晶圆光刻胶进行分析。
  • 硅晶圆
硅晶圆是集成电路行业的粮食,是最主要最基础的集成电路材料,90%以上的芯片在硅晶圆上制造,目前300mm硅晶圆是芯片制造的主流材料,使用比例超过70%。曾经,我国300mm半导体硅片100%依赖进口,是我国集成电路产业链建设与发展的主要瓶颈。全球主要的半导体硅晶圆供应商包括日本信越化学(Shin-Estu)、日本盛高(SUMCO)、德国Siltronic、韩国SK Siltron以及中国台湾的环球晶圆、合晶科技等公司。五大晶圆供货商的全球市占率达到了92%,其中日本信越化学占27%,日本盛高占26%,台湾环球晶圆占17%,德国Silitronic占13%,韩国SK Siltron占9%。下表列出了全球10大硅晶圆提供商,供参考。

国内的情况,中国大陆半导体硅晶圆销售额年均复合增长率达到41.17%,远高于同期全球半导体硅片市场的25.75%。但这块市场并没有掌握在本土厂商手中,在打造国产化产业链的今天,还有很大的空间供国内晶圆制造商去发展。
  • 光刻胶
光刻胶是光刻过程最重要的耗材,光刻胶的质量对光刻工艺有着重要影响。光刻胶可分为半导体光刻胶、面板光刻胶和PCB光刻胶。其中,半导体光刻胶的技术壁垒最高。目前全球光刻胶主要企业有日本合成橡胶(JSR)、东京应化(TOK)、信越化学(ShinEtsu)、富士电子(FUJI)、美国罗门哈斯(Rohm
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

TWSC 2985系列SD6.0存储芯片 国内首颗支持4K LDPC纠错技术 增强纠错、耐久可靠、性能升级

关键字: 德明利 半导体 存储 芯片 国产存储企业

2024年4月11日,中国——意法半导体的ST25R100近距离通信(NFC)读取器芯片独步业界,集先进的技术功能、稳定可靠的通信连接和低廉的成本价格于一身,在大规模制造的消费电子和工控设备内,可以提高非接触式互动功能的...

关键字: 嵌入式 数据读取器 芯片

其最新一代开创性系统集成芯片及配套软件将为4600万辆汽车提供更多安全和便利功能 上海2024年4月17日 /美通社/ -- Mobileye今日宣布,其已向客户交付其最新的EyeQ™6 Lite (EyeQ...

关键字: 芯片 MOBILEYE ADAS 自动驾驶

随着2024年的到来,北斗系统建设已走过栉风沐雨、接续奋斗的30年,几代北斗人也走过了北斗系统建设从无到有,从有源定位到无源定位,从服务中国到服务亚太,再到全球组网的“三步走”发展历程。

关键字: 华大北斗 芯片

微控制单元(Microcontroller Unit;MCU) ,又称单片微型计算机(Single Chip Microcomputer )或者单片机,是一种针对特定应用的控制处理而设计的微处理器芯片,其工作频率(在1M...

关键字: MCU 芯片 半导体

今日凌晨,中国台湾东部的花莲县连续发生地震,最高强度为6.3级,震源深度10公里,据中国地震台网分析,本次地震均为4月3日台湾花莲县海域发生的7.3级地震的余震。中国台湾地区在全球半导体供应链中扮演者重要角色,其10nm...

关键字: 固态硬盘 芯片 存储

在科技飞速发展的今天,电子设备已经成为了我们日常生活中不可或缺的一部分。而在这些电子设备的内部,一个不可或缺的组成部分便是开关电源芯片。作为电源管理集成电路的核心,开关电源芯片在电子设备中发挥着至关重要的作用。本文将深入...

关键字: 开关电源 芯片

开关电源芯片作为电子设备中的重要组成部分,是实现电源转换和管理的核心器件。随着科技的不断进步,开关电源芯片的种类也在不断增加,各具特色,满足了不同设备和应用场景的需求。本文将深入探讨开关电源芯片的种类及其科技应用,带领读...

关键字: 开关电源 芯片

4月17日消息,Intel官方宣布,工程师内部研发了一种新的AI增强工具,可以让系统级芯片设计师原本需要耗费6个星期才能完成的热敏传感器设计,缩短到区区几分钟。

关键字: Intel 芯片 1.8nm

业内消息,昨天美国芯片设计公司 AMD 推出了锐龙PRO 8040/8000系列AI处理器芯片,为支持人工智能的PC提供动力,试图在与英伟达和英特尔等竞争对手的AI PC 竞争中获得领先地位。

关键字: AMD 锐龙 AI处理器 芯片
关闭
关闭