当前位置:首页 > 单片机 > 程序喵大人
[导读]来源|https://blog.csdn.net/Solstice/article/details/8547547声明| 本文为CSDN博主[陈硕]原创文章,如有侵权请联系删除最近看见交流群里小伙伴在讨论这个问题,自己也很感兴趣,上网找到了陈硕大佬的这篇文章,分享给大家!以下是正...

来源 | https://blog.csdn.net/Solstice/article/details/8547547

声明 | 本文为CSDN博主[陈硕]原创文章,如有侵权请联系删除最近看见交流群里小伙伴在讨论这个问题,自己也很感兴趣,上网找到了陈硕大佬的这篇文章,分享给大家!以下是正文:

我在《Linux 多线程服务端编程:使用 muduo C 网络库》第 1.9 节“再论 shared_ptr 的线程安全”中写道:

(shared_ptr)的引用计数本身是安全且无锁的,但对象的读写则不是,因为 shared_ptr 有两个数据成员,读写操作不能原子化。shared_ptr 的线程安全级别和内建类型、标准库容器、std::string 一样,即:



一个 shared_ptr 对象实体可被多个线程同时读取(文档例1);


两个 shared_ptr 对象实体可以被两个线程同时写入(例2),“析构”算写操作;


如果要从多个线程读写同一个 shared_ptr 对象,那么需要加锁(例3~5)。


请注意,以上是 shared_ptr 对象本身的线程安全级别,不是它管理的对象的线程安全级别。


后文(p.18)则介绍如何高效地加锁解锁。本文则具体分析一下为什么“因为 shared_ptr 有两个数据成员,读写操作不能原子化”使得多线程读写同一个 shared_ptr 对象需要加锁。这个在我看来显而易见的结论似乎也有人抱有疑问,那将导致灾难性的后果,值得我写这篇文章。本文以 boost::shared_ptr 为例,与 std::shared_ptr 可能略有区别。



shared_ptr 的数据结构
shared_ptr 是引用计数型(reference counting)智能指针,几乎所有的实现都采用在堆(heap)上放个计数值(count)的办法(除此之外理论上还有用循环链表的办法,不过没有实例)。具体来说,shared_ptr 包含两个成员,一个是指向 Foo 的指针 ptr,另一个是 ref_count 指针(其类型不一定是原始指针,有可能是 class 类型,但不影响这里的讨论),指向堆上的 ref_count 对象。ref_count 对象有多个成员,具体的数据结构如图 1 所示,其中 deleter 和 allocator 是可选的。



图 1:shared_ptr 的数据结构


为了简化并突出重点,后文只画出 use_count 的值:



以上是 shared_ptr x(new Foo); 对应的内存数据结构。


如果再执行 shared_ptr y = x; 那么对应的数据结构如下。



但是 y=x 涉及两个成员的复制,这两步拷贝不会同时(原子)发生。


中间步骤 1,复制 ptr 指针:



中间步骤 2,复制 ref_count 指针,导致引用计数加 1:



步骤1和步骤2的先后顺序跟实现相关(因此步骤 2 里没有画出 y.ptr 的指向),我见过的都是先1后2。


既然 y=x 有两个步骤,如果没有 mutex 保护,那么在多线程里就有 race condition。


多线程无保护读写 shared_ptr 可能出现的 race condition

考虑一个简单的场景,有 3 个 shared_ptr 对象 x、g、n:


shared_ptr g(new Foo); // 线程之间共享的 shared_ptr

shared_ptr x; // 线程 A 的局部变量

shared_ptr n(new Foo); // 线程 B 的局部变量

一开始,各安其事。



线程 A 执行 x = g; (即 read g),以下完成了步骤 1,还没来及执行步骤 2。这时切换到了 B 线程。



同时编程 B 执行 g = n; (即 write g),两个步骤一起完成了。


先是步骤 1:



再是步骤 2:



这是 Foo1 对象已经销毁,x.ptr 成了空悬指针!


最后回到线程 A,完成步骤 2:



多线程无保护地读写 g,造成了“x 是空悬指针”的后果。这正是多线程读写同一个 shared_ptr 必须加锁的原因。


当然,race condition 远不止这一种,其他线程交织(interweaving)有可能会造成其他错误。


思考,假如 shared_ptr 的 operator= 实现是先复制 ref_count(步骤 2)再复制 ptr(步骤 1),会有哪些 race condition?



杂项
shared_ptr 作为 unordered_map 的 key


如果把 boost::shared_ptr 放到 unordered_set 中,或者用于 unordered_map 的 key,那么要小心 hash table 退化为链表。http://stackoverflow.com/questions/6404765/c-shared-ptr-as-unordered-sets-key/12122314#12122314


直到 Boost 1.47.0 发布之前,unordered_set > 虽然可以编译通过,但是其 hash_value 是 shared_ptr 隐式转换为 bool 的结果。也就是说,如果不自定义hash函数,那么 unordered_{set/map} 会退化为链表。https://svn.boost.org/trac/boost/ticket/5216


Boost 1.51 在 boost/functional/hash/extensions.hpp 中增加了有关重载,现在只要包含这个头文件就能安全高效地使用 unordered_set 了。


这也是 muduo 的 examples/idleconnection 示例要自己定义 hash_value(const boost::shared_ptr
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭