当前位置:首页 > 公众号精选 > 记得诚
[导读]大家好,我是记得诚。电解电容是通过电解质作用在电极上形成的氧化层作为绝缘层的电容,通常具有较大的容量。电解质是液体、胶冻状富含离子的物质,大多数电解电容都是有极性的,也就是在工作时,电容的正极的电压需要始终比负极电压高。电解电容的高容量也是牺牲了很多其它的特性换来的,比如具有较大...

大家好,我是记得诚。


电解电容是通过电解质作用在电极上形成的氧化层作为绝缘层的电容,通常具有较大的容量。


电解质是液体、胶冻状富含离子的物质,大多数电解电容都是有极性的,也就是在工作时,电容的正极的电压需要始终比负极电压高。


电解电容的高容量也是牺牲了很多其它的特性换来的,比如具有较大的漏电流、较大的等效串联电感和电阻、容值误差较大、寿命短等。


除了有极性的电解电容之外,也有无极性的电解电容。在下图中,就是有两种1000uF,16V的电解电容。其中,较大的是无极性,较小的是有极性的。


无极性和有极性电解电容
电解电容内部可能是液体电解质或者固态聚合物,电极材料常用铝(Aluminum)或者钽(Tandalum)。下图是常见的有极性铝电解电容内部的结构,两层电极之间有一层浸有电解液的纤维纸,再加一层绝缘纸转成圆柱形,密封在铝制壳内。
电解电容内部结构
解剖开电解电容,可以清楚地看到它的基本结构。为了防止电解液的蒸发和泄露,电容引脚部分使用了密封橡胶进行固定。
当然,图中也显示了有极性和无极性的电解电容的内部体积的差别。在同样容量和耐压等级下,无极性的电解电容比有极性大了一倍左右。
无极性和有极性电解电容内部结构
这样的差别,主要来自于两种电容内部电极的面积出现了较大的差异。下图左边是无极性的电容电极,右边是有极性的电极。除了面积差异之外,两种电极厚度也有区别,有极性的电容电极厚度较薄。
电解电容铝片不同的宽度
电容爆炸
当电容施加的电压超过其耐压时,或者对于有极性电解电容电压极性加反时,都会引起电容漏电流急剧上升,造成电容内部热量增加,电解液会产生大量的气体。
为了防止电容爆炸,在电容外壳的顶部压制有三条凹槽,这样便于电容顶部在高压下率先破裂,释放内部的压力。
电解电容顶部的爆破槽
但是,有的电容在制作过程中,顶部的凹槽压制不合格,电容内部的压力会使得电容底部的密封橡胶被弹出,此时电容内部的压力突然释放,就会形成爆炸。
1、无极性电解电容爆炸
下图显示了手边一颗无极性电解电容,它的容量为1000uF,耐压16V。在施加电压超过18V之后,漏电流突然增加,电容内部的温度和压力增加。最终,电容底部的橡胶密封圈炸开,内部电极像爆米花一下被砸松散。
无极性电解电容过压爆破
通过在电容上捆绑一个热电偶,可以测量电容的温度随着施加的电压增加变化的过程。下图显示了无极性电容在电压增加过程中,当施加的电压超过耐压值,内部温度继续增高的过程。电压与温度之间的关系
下图显示了在同样的过程中,流过电容的电流变化。可以看到,电流的增加是造成内部温度上升的主要原因。在这个过程中,电压是成线性增加,随着电流急剧升高,供电电源内组使得电压下降。最终,当电流超过6A之后,随着一声巨响,电容炸开。电压与电流之间的关系
由于无极性的电解电容内部体积大,电解液多,所以在过流之后所产生的压力巨大,导致了外壳顶部的泄压槽没有破裂,而电容底部的密封橡胶被炸开了。
2、有极性电解电容爆炸
对于有极性的电解电容,施加电压。当电压超过电容的耐压时,漏电电流也会急剧上升,造成电容过热爆炸。
下图显示了有极限的电解电容,它的容量为1000uF,耐压16V。在过压之后,通过顶部泄压槽释放内部气压过程,因此就避免了电容爆炸过程。
极性电解电容过压爆破
下图显示了电容的温度随着施加电压的增加变化的情况,当电压逐步接近电容的耐压后,电容的留点电流增加,内部的温度继续上升。电压与温度之间的关系
下图是电容的漏电电流变化情况,标称为16V耐压的电解电容,在测试过程中,当电压超过15V之后,电容的漏电便开始急剧上升了。电压与电流之间的关系
通过前面两个电解电容的实验过程遭遇,也可以看到对于此类1000uF普通电解电容耐压限制情况。为了避免电容被高压击穿,因此在使用电解电容的时候,需要根据实际电压波动情况,留下足够的余量。
电解电容串联
在适当的情况下,可以通过并联和串联来分别获得更大的电容容量和更大的电容耐压。
过压爆破之后的电解电容爆米花
在有些应用场合,施加在电容上的电压是交流电压,比如扬声器的耦合电容、交流电相位补偿、电机移相电容等,需要使用无极性的电解电容。
在一些电容制造商给出的使用手册上,也给出了使用传统的有极性电容通过背对背的串联,即将两个电容的串联在一起,但极性相反来获得无极性电容的效果。
过压爆破之后的电解电容
下面对比一下有极性电容在施加正向电压、反向电压、两个电解电容背对背串联成无极性电容三种情况下,漏电流随着施加电压增加变化情况。
1、正向电压与漏电流
通过串联一个电阻来测量流过电容的电流,在电解电容(1000uF,16V)的耐压范围内,从0V开始逐步增加施加的电压,测量对应的漏电电流与电压之间的关系。
正极性串联电容
下图显示了有极性铝电解电容的漏电流与电压之间的关系,这是一个非线性的关系,漏电电流在0.5mA以下。正向串联之后电压电压与电流之间的关系
2、反向电压与漏电电
使用同样的电流测量施加方向电压与电解电容漏电电流之间的关系,从下图可以看出,当施加的反向电压超过了4V之后,漏电电流便开始快速增加。通过后面的曲线斜率来看,反向的电解电容相当于一个阻值 为1欧姆的电阻。反向电压电压与电流之间的关系
3、背对背串联的电容
将两个相同的电解电容(1000uF,16V)背对背串联在一起,形成一个无极性等效的电解电容,然后测量它们的电压与漏电流之间的关系曲线。
正反极性串联电容
下图显示了电容电压与漏电流之间的关系,可以看到在施加的电压超过4V之后,漏电流会增加,电流幅值小于1.5mA。
而这个测量结果的确有点令人感到意外,你会看到这两个背对背串联电容的漏电流,居然大于单个电容正向施加电压时漏电流。正反向串联之后电压电压与电流之间的关系
不过,由于时间原因,对于这个现象后面没有进行重复测试,也许其中一个电容使用的是刚才反向电压测试的电容,内部已经有了损坏,所以才产生了上面的测试曲线。
今天的内容到这里就结束了,我们下一期见。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

检查电解电容的胶管或引脚,通常胶管一端印有负极标识,引脚处有带网格的一端代表负极。

关键字: 电解电容 正负极 引脚

电解电容和普通电容是两种不同类型的电容器,它们在结构、工作原理和使用场合等方面存在明显的差异。本文将详细介绍电解电容和普通电容的区别,帮助读者更好地了解这两种电容器。

关键字: 电解电容 普通电容 结构

电解电容是一种常用的电子元件,其正负极的判断对于电路的稳定性和安全性至关重要。然而,由于电解电容的结构和工作原理,正负极的判断并不总是显而易见的。本文将详细介绍电解电容正负极的判断方法,帮助读者更好地理解和应用这一电子元...

关键字: 电解电容 电子元件 正负极

电解电容作为电子电路中的重要元件,其性能的好坏直接影响到整个电路的正常运行。因此,正确地测量电解电容的好坏对于保证电路的稳定性和可靠性至关重要。本文将详细介绍电解电容的测量方法,帮助读者了解如何准确地判断电解电容的好坏。

关键字: 电解电容 电子电路 性能

本文中,小编将对铝电解电容选择要点予以介绍,如果你想对铝电解电容的详细情况有所认识,或者想要增进对铝电解电容的了解程度,不妨请看以下内容哦。

关键字: 电容 电解电容 铝电解电容

为增进大家对电解电容的认识,本文将对电容电容、电解电容和固态电容的区别予以介绍。

关键字: 电解电容 指数 电容

TDK株式会社(东京证券交易所代码:6762)推出全新爱普科斯 (EPCOS) B43652*系列焊片型铝电解电容器。新系列元件具有超紧凑的尺寸和超大纹波载流能力的特点,并且兼容RoHS指令,设计的最大额定电压为450...

关键字: TDK 电解电容 纹波电流

电容:亦称作“电容量”,是指在给定电位差下的电荷储藏量。

关键字: 电解电容 电容值

铝电解电容的寿命计算(纹波电流法)手把手教你

关键字: 电解电容 耐压 性能
关闭
关闭