当前位置:首页 > 公众号精选 > TsinghuaJoking
[导读]§01高端电流检测  在很多功率电子系统中,需要对于电源正极输出电流进行检测(也称高端电流检测:High-SideCurrentSensing),比如电机控制、线圈驱动、电源管理(像DC-DC转换,电池检测等)。在这些应用中,在电源的正极(高端)而非负极(也就是电流返回端)对电流...

§01 端电流检测

  很多功率电子系统中,需要对于电源正极输出电流进行检测(也称高端电流检测:High-Side Current Sensing),比如电机控制、线圈驱动、电源管理(像 DC-DC转换,电池检测等)。在这些应用中,在电源的正极(高端)而非负极(也就是电流返回端)对电流检测,可以提高电流检测性能。例如可以确定对地短路电流、检测续流二极管中的电流。如果在电源负端使用分流器来获取电源电流可能会造成地线电位的不一致。下面图1, 图2 显示了使用高端检测电机和电磁线圈电流的电路配置。

▲ 图1 电磁线圈驱动电路中的高端电流检测
▲ 图2 H-桥电机驱动电路高端电流检测电路
▲ 图3 三相电机驱动高端电流检测
  在上面三个电流检测应用中,如果使用PWM驱动,那么在电流检测电阻上的共模电压的摆动范围是从0V到电池电压。这种PWM输入信号是一个周期性,高频,快速上升下降的特性,是由电路中功率场效应管所产生的。因此,用于对高端电流分流器进行信号处理的运算放大器需要能够同时具有极强的共模抑制能力、增益高、精确度高、(电压、电流)偏置低的特点。

  图1所示的电磁线圈驱动电路中,MOS场效应管驱动线圈的电流总是从上往下流动,因此单向电流检测即可满足要求。但在图2,图3所示的电机驱动电路中,电流是双向的,因此需要电路能够处理正负电流信号。

  设计者会发现现在有很多半导体公司提供了不同用于放大高端电流检测的芯片。其中一个重要值得注意的现象,那就是在所有可备选的电流检测IC芯片里,可以分成两大类别:一类为电流检测放大芯片,另外一类是 差分放大芯片

  这里,我们将会指出和解释上述两类信号处理芯片的主要差别,帮助电子工程师面对应用需求时选择最适合的高端电流检测方案。下面以双向差分高电压运算放大器 AD8206[3] 与双向电流检测放大器 AD8210[4] 为例进行对比。这两款运放具有相同的外部管脚,都可以用于高端电流检测,但他们的性能和内部结构却不相同。那么问题来了,在实际应用中究竟选择哪一种方案呢?

§02 作基本原理

  4给出了AD8206集成高电压差分放大器,可以最高承受65V的功波电压。芯片输入端使用了 16.7:1 的反压电阻将共模电压限制在运放A1的输入电压范围内。可惜,输入分压电阻也将差分信号做了等比例的衰减,因此通过A1、A2两级提供的 344V/V 的电压增益,可以获得 20V/V 整体电压放大倍数。

▲ 图4 AD8206简化原理图
  为了实现双向电流检测,可以通过一个低阻参考电压源为AD8206中输出放大器A2的正输入端设置一个正的参考电压。该芯片甚至可以在共模电压为负的时候继续提供对电流分流电阻上的电压信号的放大。

  下图(图5)给出了最近刚推出的高电压电流传感器放大电路AD8210,它的功能与AD8206 相类似,管脚定义都一样,但它的工作原理却不同,也带来了不同的技术指标。

▲ 图5 AD8210内部功能图
  最大的区别在于AD8210的输入并不使用衰减电阻网络来减少高的功波电压,它的输入端使用 XFCB IC的制作工艺所产生的高压三极管,对应的VCE可以高达65V,从而可以承受高达65V的公模输入电压。

  AD8210对于小的电流差分信号进行放大的方式参加图5。芯片上第一放大器A1的正负两端分别通过R1、R2连接到电流采样电阻两端,A1通过控制三极管Q1,Q2导通电流来抵消在正负输入端的电压。Q1,Q2的导通电流在内部精确匹配的电阻上产生成比例的电压(已经没有了共模电压了),经过放大器A2放大输出。A2由 5V供电,输出的电压与输入差分电压的比例为 20:1

  AD8210电流放大器的电路结构中输入结构要求输入信号功波电压需要大于 2V 或者  3V  ,不能小于0。在AD8210内部通过内置的上拉电阻提升A1输入电压,这样就可以使得输入共模电压可以低至 -2V

§03 种芯片的差异

  显然,电流传感放大器(AD8210)与差分放大器(AD8206)在工作机制上有明显的差异。前者是将输入差分信号转换成对地的不同电流,再由芯片内部的电阻转换成没有共模电压的差分信号经由后级运发放大输出,芯片主要依靠高压半导体工艺来抵抗共模高压的。而后者则是通过输入衰减电阻网络将信号进行统一衰减后,再利用差分放大对输入信号中的差分信号进行放大,芯片则依靠电阻网络来衰减共模高压的。

  虽然在两个芯片的数据手册中已经将它们的主要性能指标进行了说明,但一些基于内部结构差异所带来的不一样则不能从芯片数据手册中立即看清楚。下面列出一些关键点,帮助设计最佳的解决方案。

1、放大器带宽

  由于对输入信号的衰减,所以通过差分放大方案通常只有电流传感放大器的频率响应带宽的 五分之一 左右。尽管如此,这两款芯片的带宽还是能够满足大部分应用需求。

  比如对于电磁铁驱动中,通常需要大于20kHz的PWM驱动,考虑到噪声对于电流信号放大带宽也要求大于20kHz。对于电磁铁控制往往着重考虑平均电流的稳定性,所以对于信号带宽要求不高。但在电机控制中的电流采样中,特别是对PWM信号控制下的电流顺时电流采集,则要求更高的电流放大带宽,此时就需要考虑使用电流传感放大器(AD8210)替代AD8206了,它可以输出电流信号更准确的电流波形。

▲ 电流波形与AD8206输出的电压波形

2、共模抑制比

  对于共模电压的抑制性能方面,电流放大器可以提供更高的共模电压抑制(CMR:Common-Mode Rejection)性能。比如AD8210,通过内部精确匹配的高压三极管,可以提供高达 100-dB 的CMR。依赖于衰减电阻网络的AD8206,由于只能做到0.01%的精度,因此它的的CMR为 80-dB 左右。

3.外部滤波网络影响

  为了抑制电流噪声,在放大电路输入端增加RC低通滤波器。比如下图中,就使用了Rf,Cf组成了电流信号的低通滤波器。

▲ 图6 输入滤波网络
  对于差模放大器,它的输入电阻阻抗大于100kΩ。比如AD8206它的输入电阻为200kΩ,如果外部电流滤波电阻Rf为200欧姆,所产生的增益误差大约为 0.1%。如果两个低通滤波器电阻Rf之间的匹配误差也在1%左右,那么所产生的CMR影响大约  94-dB ,不会对器件本身所具有的  80-dB 造成很大的 影响。

  但是对于电流传感方式的放大器,它具有很高的公模输入电阻。但为了将输入差分电压转换成差分电流,则放大器的输入电阻Rin则只有5kΩ左右。比如AD8210它的Rin为3.5k欧姆。由此外部低通滤波器所带来的增益误差则高达 5.4% !同时,CMR也降低到 59-dB

  所以在采用电流放大器时,对于外部低通滤波网络参数需要特别考虑,比如滤波电阻最好小于10欧姆。

4、输入过载

  在偶然情况下,如果负载出现了过压、过流,这样就会在电流传感放大器AD8210两端造成极大的差分电压,从而可以引起芯片的损坏。对于采用差分放大的AD8206来说,对于负载面临的过流、过压则会有更宽的承受范围,并不容易引起芯片的崩溃。

5、反向电压保护

  在有些情况下,可能出现设备电源电压接反,这样就会在电流放大器两端产生复制非常高的负共模电压。具有分压电阻网络输入的差分放大器(AD8206)对于这种偶然出现的负共模电压有很强的的忍受能力,但对于AD8210则情况大为不妙了。由于它的输入Rin阻值相对较小,大的负共模电压就会使得芯片中的ESD二极管导通,从而引起内部电路损坏。

6、输入偏置电流

  在一些低功耗应用电路中,需要考虑芯片的静态工作电流。对于AD8206它的输入电阻网络即使在芯片不供电的情况下,电阻网络依然消耗高端电源电流。对应的AD8210,则会在电路掉电之后,也将内部的晶体管电路关闭,所以几乎不再消耗任何电源电流了。因此,在电池供电的低功耗应用中,AD8210可能会更合适一些。

§04 流检测方案总结

  电动车、通讯、消费类产品以及工业应用中,高端电流检测被广泛应用。基于差分电压放大的检测与基于电流检测放大两个检测方案可以在设计中被采用。虽然这些IC在功能和管脚定义上相同,但面临采集精度、系统可靠性方面要求高的时候,则需要根据两者方案内部机理不同考虑选择合适的电流检测方案。下面表格中给出了这两种方案的对比。

【表格1 对比电流放大与差分放大方案】

FeaturesCurrent-Sense AmplifiersDifference Amplifiers
Speed is Ideal for Monitoring...Instantaneous currentAverage current
Input CMR (DC)>100 dBAbout 80 dB
Input CMR (PWM)About 80 dBAbout 80 dB
“Off” Input Bias-Current ConsumptionVery lowContinuous leakage in input resistance divider
External FilteringPrimarily “post”“Pre” or “post”
Input Stress SusceptibilityExternal stresses need careful considerationTypically robust

参考资料

[1]High-Side Current Sensing: Difference Amplifier vs. Current-Sense Amplifier: https://www.analog.com/en/analog-dialogue/articles/high-side-current-sensing.html

[2]本文原文的PDF下载: https://www.analog.com/media/en/analog-dialogue/volume-42/number-1/articles/high-side-current-sensing.pdf

[3]AD8206: https://www.analog.com/en/products/ad8206.html

[4]AD8210: https://www.analog.com/en/products/ad8210.html



公众号留言


大大,我想问下单车的场地,能早点公报吗?桂林的天气天天下雨,难受死了,本来室内的场地也让给四轮他们了,因为我们是室内,所以我们现在室内的场地也没有了,太难了,我们想去申请个场地。最多只能申请一个地方了,也可能申请不到。场地的材质很重要的,我们试了好几个场地。很多都能跑,但是一转大弯就凉凉。我们想调平衡的,可调了好久还是那样,现在都怀疑这是我们调得最好的了,因为有些场地转115左右的弯是没问题们。


回复:我的问题是,公布赛道对于你们调试有帮助吗?



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

为增进大家对放大器的认识,本文将对放大器以及差分放大器与单端放大器的区别予以介绍。

关键字: 放大器 指数 差分放大器 单端放大器

场效应管(Field-Effect Transistor,FET)是一种电压控制型半导体器件,具有输入阻抗高、噪声低、动态范围宽等优点。在应用中,场效应管的漏集(Drain)和源集(Source)是两个重要的电极,它们的...

关键字: 场效应管 差分放大器

霍尔电流传感器基于磁平衡式霍尔原理,根据霍尔效应原理,从霍尔元件的控制电流端通入电流Ic,并在霍尔元件平面的法线方向上施加磁感应强度为B的磁场,

关键字: 霍尔 电流传感器 磁场

什么是霍尔效应(HALL)?霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔于1879年在研究金属的导电机制时发现的。 当电流垂直于外磁场通过半导体时。

关键字: 霍尔 电流传感器 磁场

霍尔传感器的工作原理是:磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。

关键字: 霍尔 电流传感器 电位差

霍尔电流由于具有精度高、线性好、频带宽、响应快、过载能力强和不损失被测电路能量等诸多优点,因而被广泛应用于变频调速装置。

关键字: 霍尔 电流传感器 频带宽

更低漂移的隔离式霍尔效应电流传感器可降低高压系统的设计复杂性 EZShunt™ 集成式分流器产品系列不仅能够简化设计,还能降低系统成本和提高性能 上海2023...

关键字: 德州仪器 电流传感器 高精度 电流检测

差分放大器(英语:differential amplifier、difference amplifier,也称:差动放大器、差放),是一种将两个输入端电压的差以一固定增益放大的电子放大器。

关键字: 差分放大器 固定增益 放大器

差分放大器是能把两个输入电压的差值加以放大的电路。能把两个输入电压的差值加以放大的电路,也称差动放大器。这是一种零点漂移很小的直接耦合放大器,常用于直流放大。

关键字: 差分放大器 零点漂移 直流放大

无论温度怎么变化始终UCQ1=UCQ2,电路以两只管子集电极电位差作为输出,就克服了温漂 当u11=u12(共模信号)T1管和T2管所产生的电流变化相等;因此集电极电位的变化也相等。

关键字: 差分放大器 系统设计 电极电位
关闭
关闭