当前位置:首页 > 单片机 > 程序员小灰
[导读]前言:很多词汇,不论对科班生还是非科班生,如果不知道底层原理,就永远是一个魔法词汇。这些魔法词汇一多,就会导致晕头转向。降妖除魔,就是要斩杀这些如妖魔鬼怪般的魔法词汇。问两个问题阻塞,是我们程序员口中常常提到的词。这个词,既熟悉,又陌生,熟悉到一提到它就倍感亲切,但一具体解释,就...

前言:很多词汇,不论对科班生还是非科班生,如果不知道底层原理,就永远是一个魔法词汇。这些魔法词汇一多,就会导致晕头转向。降妖除魔,就是要斩杀这些如妖魔鬼怪般的魔法词汇。

问两个问题





阻塞,是我们程序员口中常常提到的词。

这个词,既熟悉,又陌生,熟悉到一提到它就倍感亲切,但一具体解释,就迷迷糊糊。

这个函数是阻塞的么?

public void function() {
  while(true){}
}
如果你说不出来,那你再看看这个函数是阻塞的么?

public void function() {
  Thread.sleep(2000);
}
为了搞清楚这个问题,我们就来一起追踪一下阻塞的本质,消灭阻塞这个魔法词汇。


从一段 Java 代码开始





写一段很简单的 java 代码

import java.util.Scanner;
public class Zuse {
public static void main(String[] args) {
     Scanner scanner = new Scanner(System.in);
     String line = scanner.nextLine();
     System.out.println(line);
  }
}
运行这段代码发现,程序将会"阻塞"scanner.nextLine() 这一行代码,直到用户输入并且按下了回车键,程序才会继续往下走,打印我们输入的内容,并且结束。

我们跟踪一下这一行代码的源码,九曲十八弯之后,终于跟踪到了一个不能再往下跟踪的 native 代码。

private native int readBytes(byte b[], int off, int len) throws IOException;当然我们可以通过 openJDK 源码继续查下去,但我有点懒,怕翻车,这里用另一个巧妙的办法。

由于我们知道这个代码一定最终会触发一次 linux 的 IO 操作相关的系统调用,所以我们用 strace 命令直接将其找到。

strace -ff -e trace=desc java Zuse我们看到程序阻塞在了这里。

read(0,当我们输入一个字符串 "hello" 并按下回车后,这个系统调用函数被补全。

read(0"hello\n"8192)OK大功告成,触发 linux 的系统调用就是 read()

这样,我们成功通过 strace 命令,直接跨越到了 linux 内核里,中间的调用过程,就不用瞎操心了。


来到 linux 内核





linux 的系统调用会注册到系统调用表(sys_call_table)中,通常是在前缀加一个 sys_。

fn_ptr sys_call_table[] = { sys_setup, sys_exit, sys_fork, sys_read,
  sys_write, sys_open, sys_close, sys_waitpid, sys_creat, sys_link,
  sys_unlink, sys_execve, sys_chdir, sys_time, sys_mknod, sys_chmod,
  sys_chown, sys_break, sys_stat, sys_lseek, sys_getpid, sys_mount,
  sys_umount, sys_setuid, sys_getuid, sys_stime, sys_ptrace, sys_alarm,
  sys_fstat, sys_pause, sys_utime, sys_stty, sys_gtty, sys_access,
  sys_nice, sys_ftime, sys_sync, sys_kill, sys_rename, sys_mkdir,
  sys_rmdir, sys_dup, sys_pipe, sys_times, sys_prof, sys_brk, sys_setgid,
  sys_getgid, sys_signal, sys_geteuid, sys_getegid, sys_acct, sys_phys,
  sys_lock, sys_ioctl, sys_fcntl, sys_mpx, sys_setpgid, sys_ulimit,
  sys_uname, sys_umask, sys_chroot, sys_ustat, sys_dup2, sys_getppid,
  sys_getpgrp, sys_setsid, sys_sigaction, sys_sgetmask, sys_ssetmask,
  sys_setreuid, sys_setregid
};
所以我们就定位到 sys_read 函数,这个函数在 linux 内核源码的 read_write.c 文件中。

int sys_read (unsigned int fd, char *buf, int count)
{
   ...
if (S_ISCHR (inode->i_mode))
return rw_char (...);
if (S_ISBLK (inode->i_mode))
return block_read (...);
   ...
}
我们读取的是标准输入,属于字符型文件,走第一个分支。

之后,要经过非常非常多的调用栈,我感觉是 linux 当中最繁琐的历程了,这个过程在我脑子里还是一片浆糊。具体可以看飞哥的《read一个字节实际发生了什么》,一行一行源码给你分析清楚,不过是以读取磁盘为例,和这个读取终端设备一样也要经历文件系统的层层折磨。

由于我们只想知道阻塞的本质,所以,忽略中间这一大坨。

跟到最后,发现一句关键代码,让我提起了精神。

if (EMPTY (tty->secondary)) {
 sleep_if_empty (
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭