[导读]开关模式电源(SMPS)产生的EMI辐射频谱是由许多参数组成的函数,包括热回路大小、开关速度(压摆率)和频率、输入和输出滤波、屏蔽、布局和接地。一个潜在的辐射源是开关节点,在很多原理图上称为SW。SW节点铜可用作天线,发射快速高效的高功率开关事件产生的噪声。这是大多数开关稳压器的...
开关模式电源(SMPS)产生的EMI辐射频谱是由许多参数组成的函数,包括热回路大小、开关速度(压摆率)和频率、输入和输出滤波、屏蔽、布局和接地。一个潜在的辐射源是开关节点,在很多原理图上称为SW。SW节点铜可用作天线,发射快速高效的高功率开关事件产生的噪声。这是大多数开关稳压器的主要辐射源。顶层SW节点的铜量当然应该最小化,以限制天线尺寸。通过单芯片开关稳压器(IC内的电源开关),SW节点从IC一直到电感,并在顶层留下一个短走线。通过使用一个控制器(开关控制器IC外部的功率开关),SW节点可以独立于开关,远离IC。SW节点铜在降压和升压开关拓扑中连接到电感的一侧。由于涉及众多性能参数,PCB的XY平面中或内层上的第1层SW节点的布局很棘手(见图1)。
图1.DC3008A LT8386低EMI LED驱动器上第1层的XY平面中突出显示的SW节点
图2.Coilcraft XAL电感上的白色条纹是短线圈引线的标记,因为线圈引线不可见。它表示端子和短引线的方向。在此连接高dv/dt以实现最低EMI。
电感几何形状
当然,当考虑电感端子时,SW节点还会垂直延伸(在Z平面中)。电感端子的垂直方向可能会增大SW节点的天线效应和辐射。此外,内部电感绕组可能不是对称的。即使电感的对称端子表明封装中隐藏的是对称结构,但元件顶部的极性指示却有另外的说法。图2显示了Coilcraft
XAL电感系列的内部绕组结构。扁平线绕组从元件底部开始,结束于顶部,因此在Z平面中,一个端子最终要比另一个端子短得多。此外,侧面有裸露SW节点的电感可能比具有屏蔽垂直金属的电感更差,如图3所示。电路板设计人员可以选择垂直裸露端子最少的电感来减少EMI,但两个电感端子的方向和对辐射的相对影响如何?辐射反映真相
被测电路板的低辐射性能是IC辐射性能和布局考虑相结合的结果。即使采用低辐射单片IC,也必须慎重处理布局,同时还要考虑到关键辐射元件的安装。为了证明这一点,我们考察了LT8386演示电路的主电感L1的方向对电路板的影响(见图4)。在这种情况下,电感制造商Coilcraft规定元件上方标记有白线的为XAL6060系列电感的短端子。EMI室中的标准CISPR
25传导发射(CE)和辐射发射(RE)测试表明,该电感的放置方向(见图5)会严重影响性能。
图3.不仅要注意方向,还应注意EMI敏感设计上的电感端子类型
图4.DC3008A LT8386低EMI LED驱动器原理示意图中突出显示的SW节点。将短边端子放在方向1和方向2,比较完整辐射结果。
图5.采用DC3008A LT8386 LED驱动器的Coilcraft XAL6060-223MEB电感方向辐射测试。L1方向1(左),短端子在SW节点上;L1方向2(右),长端子在SW节点上。辐射结果如图6至图8所示。图6、图7和图8表明,DC3008A的辐射性能直接受到演示电路上L1方向的影响,其他元件没有变化。具体而言,对于方向1——即短边端子放在SW节点上,低频RE(150
kHz至150 MHz)和FM频段CE(70 MHz至108 MHz)具有较低EMI。AM频段中的17 dBµV/m至20
dBµV/m差异无法被忽略。并非所有电感"生而平等"。绕组方向、端子形状、端子连接的形状甚至芯材料可能不同。芯材料和结构不同的磁场和电场的强度可能会起到改变电感辐射的作用。但是,本案例研究揭示了一个需要关注的方面,我们可以把它变成有利因素。
图6.辐射发射表明,DC3008A上的电感方向对结果有重大影响。短边端子附着于SW节点以使SW天线最小(红色),辐射发射(RE)得到显著改善。
3 MHz) with the short-side terminal of the inductor attached to the switch node vs. the alternative polarity." /> 图7.电感的短边端子附着于开关节点与另一种极性相比,电流探针方法传导发射(CE)有所改善(>3 MHz)
图8.电感的短边端子附着于开关节点与另一种极性相比,电压方法传导发射(CE)有所改善(>3 MHz)无极化指示的电感
如果电感制造商用丝网正面标记或点指出内部端子尺寸的不同,那么很容易确定方向。如果选择此类电感中的一种用于设计,在PCB丝网上、安装图上甚至原理图中做上标记是明智的。遗憾的是,有些电感没有极化或短端子指示。内部绕组结构可能接近对称,或者可能存在已知的结构差异。这里没有任何恶意——制造商可能没有意识到其产品中固有的这种特定安装方向的区别。无论如何,我们建议在认证的腔室中评估选定电感在两个方向上的辐射,以确保高性能测量结果可重复。有时候没有外部标记,电感的安装方向不可避免是任意的,但因为其他参数,仍需要使用电感。例如,Würth
Elektronik的WE-MAPI金属合金电源电感尺寸很小,效率很高。其端子仅位于壳体的底部。每个元件的顶部WE徽标附近都有一个点,但数据手册上并未将该点指定为绕组指示的起点(见图9)。尽管最初这会引起一些混淆,但该元件具有相当对称的内部绕组结构,两个安装方向的性能应当相同。因此,IC顶部的点不必在安装丝网上指示出来。不过,如果用在EMI至关重要的电路中,在两个方向上进行测试以确认性能是明智的。另一示例:Würth WE-XHMI
我们用高性能Würth电感测试了DC3008A,封装顶部上的点和数据手册中指出了其绕组的起点(见图10)。对于LT8386的外形尺寸和电流要求,74439346150
15μH电感非常适合。同样,为了与Coilcraft进行比较,我们在两个方向上安装该电感以进行辐射测试(见图11)。结果(见图12)类似于Coilcraft电感。辐射结果表明,电感的安装方向对辐射有着显著影响。在这种情况下,图11中的方向1显然是最佳方向,辐射最低。方向1的较低频率AM频段(RE)和FM频段(CE)辐射显然更好。
图9.WE-MAPI电感数据手册未给出绕组起始点,不过元件顶部标识上有一个绕组起始点。这些电感可能没有方向相关的辐射效应,但应通过测试确认。
图10.WE-XHMI系列电感的顶部标识指明了绕组起始点。
图11.采用DC3008A
LT8386 LED驱动器的Würth 74439346150("WE
150")电感方向辐射测试。L1方向1(左),绕组的短端子起始点在SW节点上;L1方向2(右),长端子在SW节点上。辐射结果如图12所示,表明绕组起始点应连接到SW节点以获得最佳效果。双开关节点降压-升压IC(结果待续)
显而易见,电感方向对单开关节点升压LED驱动器中的辐射有影响。我们可以假设升压调节器的SW节点具有相同的特征辐射,因为电压调节器和LED驱动电路中的功率转换和开关元件相同。我们还可以假设,为使电感端子的天线效应最小化,降压调节器具有类似的SW节点设计优先级。不过,由于降压调节器的SW节点更靠近转换器的输入侧,因此后续跟进工作可能有助于确定电感方向在RE和CE区域的影响是否与升压调节器相同。对于双开关节点降压-升压转换器,则有一点进退两难。常用的降压-升压转换器(如 LT8390
60
V同步4开关降压-升压控制器系列中的转换器)具有重要的低EMI特性(如SSFM)和小型热环架构。单电感设计不能清楚地揭示电感方向对辐射的影响。若将短端子放在一个SW节点上,则长端子在另一个SW节点上会起到天线的作用。在这些设计中,哪个方向最好?当所有四个开关在4开关工作区(VIN接近VOUT)中切换时,会发生什么?我们将在未来的文章中探讨这个问题——在不同电感方向测试带两个SW节点的4开关降压-升压型控制器的EMI。留给大家思考:对于此拓扑结构,也许有两种以上的选择,180°分开?
图12.辐射和传导发射表明,Würth 74439346150高性能电感的安装方向对辐射结果有重大影响。结论
开关稳压器中电感的安装方向很重要。测量辐射时,应注意电感方向及其可重复性——知道所选电感在这些方面有何区别,在两个方向上进行测试,并且如果无法确定方向,应将可能有的安装陷阱清楚地告知电路板生产部门。可能只需要将电感旋转180°就能改善辐射。
电池分容化成,这些要点你知道吗?
欲知详情,请下载word文档
下载文档
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
关键字:
驱动电源
在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。
关键字:
工业电机
驱动电源
LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...
关键字:
驱动电源
照明系统
散热
根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。
关键字:
LED
设计
驱动电源
电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...
关键字:
电动汽车
新能源
驱动电源
在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...
关键字:
发光二极管
驱动电源
LED
LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。
关键字:
LED
驱动电源
功率因数校正
在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...
关键字:
LED照明技术
电磁干扰
驱动电源
开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源
关键字:
LED
驱动电源
开关电源
LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
关键字:
LED
隧道灯
驱动电源
LED驱动电源在LED照明系统中扮演着至关重要的角色。由于LED具有节能、环保、长寿命等优点,使得LED照明在各个领域得到广泛应用。然而,LED的电流、电压特性需要特定的驱动电源才能正常工作。本文将介绍常用的LED驱动电...
关键字:
LED驱动电源
led照明
LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电源转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。
关键字:
LED
驱动电源
高压工频交流
种种迹象都在表明,半导体行业或已提前进入寒冬时期,越来越多的厂商开始扛不住了……
关键字:
LED
半导体
驱动电源
崧盛股份9日发布投资者关系活动记录表,就植物照明发展趋势、行业壁垒等问题进行分享。植物照明未来市场需求广阔崧盛股份指出,植物照明将会走向长期产业领域。主要原因有三:第一,LED植物照明赋能终端种植更具有经济价值。由于LE...
关键字:
崧盛股份
驱动电源
在当今高度发展的技术中,电子产品的升级越来越快,LED灯技术也在不断发展,这使我们的城市变得丰富多彩。 LED驱动电源将电源转换为特定的电压和电流,以驱动LED发光。通常情况下:LED驱动电源的输入包括高压工频交流电(即...
关键字:
LED
驱动电源
高压直流
人类社会的进步离不开社会上各行各业的努力,各种各样的电子产品的更新换代离不开我们的设计者的努力,其实很多人并不会去了解电子产品的组成,比如LED电源。
关键字:
LED
驱动电源
低压直流
随着科学技术的发展,LED技术也在不断发展,为我们的生活带来各种便利,为我们提供各种各样生活信息,造福着我们人类。LED驱动电源实际上是一种电源,但是它是一种特定的电源,用于驱动LED发射带有电压或电流的光。 因此,LE...
关键字:
LED
驱动电源
电流
LED灯作为一种新型节能和无污染光源,由于其特有的发光照明特性,在现代照明应用中发挥着革命性的作用。作为 LED 照明产业链中最为核心的部件之一,LED 驱动电源的驱动控制技术所存在的可靠性低、成本高等典型问题一直制约着...
关键字:
多路
LED
驱动电源
随着社会的快速发展,LED技术也在飞速发展,为我们的城市的灯光焕发光彩,让我们的生活越来越有趣,那么你知道LED需要LED驱动电源吗?那么你知道什么是LED驱动电源吗?
关键字:
LED
开关电源
驱动电源
早前有新闻称,Cree在2018年开始宣布转型高科技半导体领域,并一边逐渐脱离照明与LED相关业务,一边持续投资半导体。在今日,Cree宣布与SMART Global Holdings, Inc.达成最终协议,拟将LED...
关键字:
cree
led照明