[导读]与传感器连接时,仪表放大器(IA)作用强大且功能多样,但也存在一些限制,会阻碍可变增益IA或可编程增益仪表放大器(PGIA)的设计。在有些文献中,后者也被称为软件可编程增益放大器(SPGA)。因为经常遇到要求根据各种各样的传感器或环境条件调节电路的情况,我们需要这类PGIA。采用...
与传感器连接时,仪表放大器(IA)作用强大且功能多样,但也存在一些限制,会阻碍可变增益IA或可编程增益仪表放大器(PGIA)的设计。在有些文献中,后者也被称为软件可编程增益放大器(SPGA)。因为经常遇到要求根据各种各样的传感器或环境条件调节电路的情况,我们需要这类PGIA。采用固定增益时,系统设计人员可能不得不应对欠佳的SNR,这会降低精度。《模拟对话》文章"可编程增益仪表放大器:找到适合的放大器",其中讨论了多种有助于创建精密、稳定的PGIA的技术。文章中指出了这种设计可能存在的缺陷,并展示了对可用解决方案和技术的全面调查。在本文中,我将介绍另一种促进这项工作的工具和方法,我会逐一介绍每个设计步骤,让大家快速掌握使用新发布的仪表放大器创建精密PGIA所需的外部元器件值。
一种新的仪表放大器架构常见的仪表放大器架构如图1所示。
图1. 经典仪表放大器。
增益由外部电阻器RG的值来设定。要使用这类器件创建PGIA,只需切换RG的值即可。这种切换通常使用模拟开关或多路复用器来完成。但是,模拟开关的一些非理想行为让这项任务变得复杂——例如开关的导通电阻、通道电容,以及通道电阻随施加电压的变化。图2所示为基于标准仪表放大器结构的变化版本。注意RG引脚如何被分解成±RG,S和±RG,F,单独引出,并从器件封装外部进行配置。
图2. LT6372-1架构允许配置一些IA内部节点。
图2所示的架构有一个重要的实用特性:能够配置仪表放大器,使其可以在几个不同的增益值之间切换,同时将开关电阻造成的增益误差降至最低。此特性可用于创建PGIA。如上所述,任何电阻可编程仪表放大器都可以通过切换增益电阻的值来改变其增益。但是,这种做法存在明显的缺点,例如:- 开关导通电阻(RON)标称值及其变化会造成较大的增益误差。
- 由于需要的开关RON值较低,高增益值可能无法实现。
- 开关非线性会引起信号失真。这是因为信号电流直接流过RON,因此其值随电压的任何变化都会引起失真。
如图3所示,当 LT6372-1 配置为PGIA时,可以缓解这些问题,因为RG,F和RG,S引脚是单独引出的。在这个原理图中,惠斯登电桥(由R5至R8组成)产生的信号被放大,提供4个可能的增益值,用户可根据选择的SW1开关位置进行选择。利用 LT6372 系列 引脚排列,我们可以创建一个PGIA以通过改变RF/RG比来获得所需的增益值。
图3. LT6372-1 PGIA电桥接口,提供四种增益设置。
此外,作为增益误差源的U1、U2模拟开关RON被降至最低,因为它可以与输入级反相端口及其反馈电阻串联。这样配置之后,RON只占内部12.1 kΩ反馈电阻总量的一小部分,因此对增益误差和漂移几乎没有影响。同样,由于RON值只占总反馈电阻的一小部分,其值随电压的变化几乎不会产生影响,因此开关非线性引起的失真可降至最低。此外,此器件的输入级由电流反馈放大器(CFA)架构组成,与传统的电压反馈放大器相比,它本身在增益变化时所允许的带宽或速度变化较小。1
上述所有这些因素综合在一起,让我们能够使用低成本外部模拟开关,创建具有精密增益步进的精密PGIA。图4所示为PGIA的简化图,展示了梯形电阻的不同抽头(由总共8个模拟开关实现,每次短接2个来设置增益)如何配置电路。在此图中,两个开关组由四种可能的增益值之一来描述;–RG,S和 RG,S引脚短接至RF3/RF4结。
图4. LT6372-1的框图,以及PGIA的简化外部连接(未显示增益开关)。
用于计算外部电阻的增益的设计步骤图3显示完整的PGIA配置,包括所需的开关,该配置可适应任意大小的增益范围。其中包含四个可能的增益值,但是可以通过在设计中增加更多开关来增加该值。如前所述,允许配置RG,F和RG,S引脚这一特性让我们能够增加RF来增大增益,并降低RG来减小增益,以创建功能多样的PGIA。为了计算增益,我们可以将反馈电阻计为内部12.1
kΩ调整电阻加上RG,F到RG,S端口连接上与RG,F串联的其他电阻。相反,增益设置电阻是 RG,S和-RG,S之间的总电阻。总结起来就是:RF = 12.1 kΩ 两个输入放大器各自上面的RG,F和RG,S之间的电阻RG = RG,S和–RG,S之间的电阻在这种配置下,增益的可能范围为1 V/V至1000 V/V。当U1和U2开关上的开关都设置为的短路引脚S3和D3时,对应的RF和RG值,以及产生的增益如下:RF = 12.1 kΩ 11 kΩ 1.1 kΩ = 24.1 kΩRG = 73.2 Ω 97.6 Ω 73.2 Ω = 244 ΩG = 1 2RF/RG = 1 2 × 24.1 kΩ/244 Ω = 199 V/V很容易能够看出,决定外部电阻使用哪个值是一个迭代且彼此相关的过程,可能的增益值相互作用,对选择使用的电阻产生影响。为了便于参考,表1列出了一些常见的增益值组成值,但是,还可能存在许多其他的增益组合(G)。
确定PGIA的值的步骤我们可以使用等式1中的公式依序计算增益网络中的单个电阻的值。该方程确定电阻的方式如图3所标示,表1中的案例2(增益为2、20、200和500
V/V)用作算出的示例。反馈电阻与增益设置电阻是交互式的;因此,公式必须是当前项取决于之前项的一个系列。计算公式如下:
以下是一些定义:RF1 = 12.1 kΩ (LT6372-1的内置电阻)M:增益数量(本电路为4)Gi:增益实例(在本例中,G1 – G4分别为2、20、200或500 V/V)i:在1至(M-1)之间变化,用于计算 RFi 1
等式1可用于计算任何增益组合所需的反馈电阻。一个虚拟变量(j)充当计数器,以保持之前的反馈电阻的连续总数。- 在计算之前,建议先绘制与图3所示的网络类似的电阻网络。该网络中有(2 × M) – 1个电阻,其中M =增益数。在这个示例中,M = 4,所以,电阻串中将包含7个电阻。需要针对i = 1 →(M – 1)求等式1的值。
G1 = 2, G2 = 20, G3 = 200, G4 = 500 V/V根据等式2:
根据i = 1 → (M-1),以迭代的方式求等式1的值
然后,可以使用以下等式计算中心电阻RG:
在进行最后一步计算之后,表1中的所有4个电阻值都经过计算,设计的计算过程完成。
测量的性能图以下这些图显示了使用此PGIA配置可以实现的性能:
图5. PGIA大信号频率响应。
图6. PGIA CMRR与频率的关系。
ADG444的开关电容使得在最低增益设置(G1
= 2
V/V)下,小信号频率响应出现一些明显的峰化(参见图7)。这种现象只在采用较低的增益设置时才会出现,因为LT6372-1的带宽扩展到足以受到开关的pF电容影响。解决这种副作用的方法包括,选择电容更低的开关(例如具有5
pF电容的 ADG611/ADG612/ADG613),或者限制PGIA的最低增益设置。
图7. PGIA小信号低增益峰化。
结论本文介绍了如何利用新发布的LT6372系列器件的引脚排列为仪表放大器添加增益选择功能。文中分析了这种PGIA的特性,并详细说明了其设计步骤以及性能测量值。LT6372-1具有高线性度,提供精确的直流规格和性能,因此非常适合用于此类解决方案。
ADI可预测电机健康监测系统来袭~
欲知详情,请下载word文档
下载文档
本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。
关键字:
阿维塔
塞力斯
华为
加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...
关键字:
AWS
AN
BSP
数字化
伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...
关键字:
汽车
人工智能
智能驱动
BSP
北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...
关键字:
亚马逊
解密
控制平面
BSP
8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。
关键字:
腾讯
编码器
CPU
8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。
关键字:
华为
12nm
EDA
半导体
8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。
关键字:
华为
12nm
手机
卫星通信
要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...
关键字:
通信
BSP
电信运营商
数字经济
北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...
关键字:
VI
传输协议
音频
BSP
北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...
关键字:
BSP
信息技术
山海路引 岚悦新程 三亚2024年8月27日 /美通社/ -- 近日,海南地区六家凯悦系酒店与中国高端新能源车企岚图汽车(VOYAH)正式达成战略合作协议。这一合作标志着两大品牌在高端出行体验和环保理念上的深度融合,将...
关键字:
新能源
BSP
PLAYER
ASIA
上海2024年8月28日 /美通社/ -- 8月26日至8月28日,AHN LAN安岚与股神巴菲特的孙女妮可•巴菲特共同开启了一场自然和艺术的疗愈之旅。 妮可·巴菲特在疗愈之旅活动现场合影 ...
关键字:
MIDDOT
BSP
LAN
SPI
8月29日消息,近日,华为董事、质量流程IT总裁陶景文在中国国际大数据产业博览会开幕式上表示,中国科技企业不应怕美国对其封锁。
关键字:
华为
12nm
EDA
半导体
上海2024年8月26日 /美通社/ -- 近日,全球领先的消费者研究与零售监测公司尼尔森IQ(NielsenIQ)迎来进入中国市场四十周年的重要里程碑,正式翻开在华发展新篇章。自改革开放以来,中国市场不断展现出前所未有...
关键字:
BSP
NI
SE
TRACE
上海2024年8月26日 /美通社/ -- 第二十二届跨盈年度B2B营销高管峰会(CC2025)将于2025年1月15-17日在上海举办,本次峰会早鸟票注册通道开启,截止时间10月11日。 了解更多会议信息:cc.co...
关键字:
BSP
COM
AI
INDEX
上海2024年8月26日 /美通社/ -- 今日,高端全合成润滑油品牌美孚1号携手品牌体验官周冠宇,开启全新旅程,助力广大车主通过驾驶去探索更广阔的世界。在全新发布的品牌视频中,周冠宇及不同背景的消费者表达了对驾驶的热爱...
关键字:
BSP
汽车制造
此次发布标志着Cision首次为亚太市场量身定制全方位的媒体监测服务。 芝加哥2024年8月27日 /美通社/ -- 消费者和媒体情报、互动及传播解决方案的全球领导者Cis...
关键字:
CIS
IO
SI
BSP
上海2024年8月27日 /美通社/ -- 近来,具有强大学习、理解和多模态处理能力的大模型迅猛发展,正在给人类的生产、生活带来革命性的变化。在这一变革浪潮中,物联网成为了大模型技术发挥作用的重要阵地。 作为全球领先的...
关键字:
模型
移远通信
BSP
高通
北京2024年8月27日 /美通社/ -- 高途教育科技公司(纽约证券交易所股票代码:GOTU)("高途"或"公司"),一家技术驱动的在线直播大班培训机构,今日发布截至2024年6月30日第二季度未经审计财务报告。 2...
关键字:
BSP
电话会议
COM
TE
8月26日消息,华为公司最近正式启动了“华为AI百校计划”,向国内高校提供基于昇腾云服务的AI计算资源。
关键字:
华为
12nm
EDA
半导体