当前位置:首页 > 物联网 > 《物联网技术》杂志
[导读]摘 要:电力系统频率是电力系统的重要状态反馈量,为保障电力系统安全稳定运行,需加以动态控制。随着科学技术的不断发展,频率测量的精度和技术速度在不断提高,但由于电力系统负荷的动态和惯性特性,总会有不同程度的时差和误差。本系统根据电力系统频率的特点,对现有算法进行了研究分析,提出通过硬件电路实现正弦波转换为方波的方法,该方法利用DSP处理器本身自带的输入捕捉接口捕捉该方波信号,采用防脉冲干扰均值滤波法进行计算完成高精度频率测量,将频率准确地控制在允许范围内,该方法具有较高的应用价值。

引 言

频率是电力系统的重要参数,稳定的频率是电力系统安全稳定运行的重要保障,因此保持频率在允许范围内是电力系统运行的重要任务之一。随着电网规模的日益扩大,电力系统频率更是直接影响系统的安全稳定水平和电能质量。如果电力系统频率异常,电力系统的正常运行将会受到影响,甚至还会导致频率稳定被破坏的事故发生。基于此,本文深入研究和分析了电力系统的频率特性,提出用LM393 作为过零比较器,将正弦信号转换成方波,利用dsPIC33FJ256GP710A 处理器自身携带的输入捕捉接口捕捉该方波信号,使用抗脉冲干扰测周法,进而完成对频率的高精度测量。对电力系统的运行及控制具有重要的现实意义和理论价值。

1 交流采样转换测量硬件设计原理

1.1 信号调理模块

本微机综保主要用于采集电流值和频率,通过采集A 相路电流频率的方法来节省端口,由于AD 只能采集电压值,所以需要将大范围的电流输入变换为小范围的电压输入,这就需要用到电抗变换器或电流变换器。三相交流分别接到了三个TR0139-2B(规格为100 A/3.3 V)电流变换器上,零序电流接到了 TR0139-2C(规格为 6 A/3.3 V)电流变换器上,它们线性转换后的输出电压大小都在 3.3 V 以下,波形基本保持与电流波形相同且同相。图1 所示为电流- 电压调理模块的电路图。

当电路发生短路故障时,工频电流中往往会掺杂有高频谐波分量,所以电路中就需要进行低通滤波处理,图中电流变换器右侧的串联电阻和接地电容组成的RC 低通滤波电路就是为此而设计的。OP777 负反馈中电阻与电容并联也能降低高频谐波分量对电路产生的影响,这是因为输出端的高频信号有一部分会通过电容返回到输入端,且反馈回来的信号跟输入的信号是不同相的,所以就会有一部分高频信号被抵消掉。

基于正弦波变化的电力信号系统频率测量方法

1.2 频率测量电路的设计

图 2 所示为正弦波- 方波转换的硬件电路。LM393 是由两个独立的、高精度电压比较器组成的集成电路,失调电源比较低,最大为 2.0 mV。LM393 在电路中起到过零比较器的作用,将正弦波转换为方波。这样 dsPIC33FJ256GP710 处理器就可以利用自身携带的输入捕捉接口捕捉该方波信号,采用防脉冲干扰测周法算出A 相输入的频率值大小,完成高精度频率测量。

基于正弦波变化的电力信号系统频率测量方法

2 算法分析

目前用于频率测量的方法有很多,被测对象的特点和测量的频率范围决定了频率测量的精准度。

计数测频方法的优点是 :测量简洁方便,在较宽频率范围内可以得到较高的测量精度。缺点为会产生 ±1 个数字的测量误差,对于较低的被测频率来说,测频精度不高。多周期同步测频方法比直接测频法有较大改进,但也有不足:一方面, 多周期同步测频法不能实现连续测量 ;另一方面,在快速测量时,由于测量精度较高的要求,时基频率必须较高,从而需要的标频计数位数就会增多,造成硬件资源的消耗增多并且会占用过多的指令周期。而周期所产生的误差只和单片机自身的晶振频率有关,频率和误差成反比关系。因此,单片机的晶振频率提高时,误差也就相应变小,所以适合低频信号频率测量的周期同步测频法。我们选用的处理器芯片其最高工作频率可达 40MHz,在变电站现场测量时,属于脉冲干扰比较严重的巧合,如果采用一般的平均值法,则干扰将会“平均”到结果中去,故平均值法不易消除由于脉冲干扰而引起的误差。为此,本文采用防脉冲干扰的测周法。在微机综保的信号采集中优势明显。

3 软件设计

信号测量模块是软件的核心模块。本系统采用防脉冲干扰的测周法,测量信号一个周期的脉宽。若一个脉宽是 T,则首先判断输入口是否为低,如果不为低则等待,为低则此时达到A 点,再判断是否为高,如果为高,则此时达到B 点,启动计时器计时,当测量完一个周期 T 后,关闭计时器,然后将计时器的 TH、TL 分别存入数据存储器中,进而计算频率。图 3 所示为测量模块的软件流程图。

4 测 试

本文中微机综保的频率为 40 MHz, 周期法测量误差公式可得理论误差为 1/40 M,实际测量值用昂立(ONLLY) AD431 微型机继电保护测试仪测试, 并用当前显示程序显示频率来计算测量误差。现在稳定的程序精度普遍在0.00% ~ 0.03% 之间,可达到频率的精确测量。实验室测量数据对比见表 1 所列。

基于正弦波变化的电力信号系统频率测量方法

5 结语

本文提出了一种基于正弦波 - 方波转换的硬件电路,并运用抗干扰的测周期方式进行频率的精确测量,将频率准确地控制在允许范围内,从而为电力系统的安全、稳定运行提供了保障,具有较高的推广价值。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭