当前位置:首页 > > 安森美
[导读]点击蓝字 关注我们作者:安森美KarolRendek,StefanKosterec,DionisisVoglitsis,RachitKumar快速直流充电市场正在蓬勃发展。伴随着电动车(EV)采用的加速,对快速充电基础设施的需求也在增加。预测未来五年的年复合增长率 (CAGR)为...

点击蓝字 关注我们


作者:安森美Karol Rendek, Stefan Kosterec, Dionisis Voglitsis, Rachit Kumar


快速直流充电市场正在蓬勃发展。伴随着电动车(EV)采用的加速,对快速充电基础设施的需求也在增加。预测未来五年的年复合增长率 (CAGR) 为20%至30%。如果您是在电力电子领域工作的一名应用、产品或设计工程师,迟早会参与到这新的充电系统的设计中。


这里可能会出现一个基本问题,特别是如果您是第一次面临这样的挑战。我应该如何开始,从哪里开始?关键的设计考虑因素是什么,我应该如何解决它们?


安森美(onsemi)的EMEA系统工程团队正准备帮助设计人员解决这样的挑战,我们将演示设计和开发基于SiC功率集成模块(PIM)的25千瓦快速直流充电桩


开发这种类型的大功率电池充电器需要多样化的技能。位于斯洛伐克Piestany的安森美电源系统科团队,领导该设计的项目协调,并承担所有与硬件开发有关的活动。电源系统应用经理Karol Rendek和高级电源系统应用工程师Stefan Kosterec担此重任。他们两人都是经验丰富的电力电子设计工程师,精通高功率转换应用。


位于慕尼黑的电机和电源转换控制团队进行固件和软件开发,该团队由Daniel Pruna任主管,Dionisis Voglitsis和Rachit Kumar任应用工程师。该团队在电源转换器和电机驱动的控制和算法开发方面拥有多年的经验。


在这系列文章中,我们将谈谈直流充电器的开发过程,在每一部分探讨不同的主题。我们将聚焦所面临的关键挑战、权衡和妥协,并展示如何从头设计、构建和验证这样的系统。我们知道设计之路并非一帆风顺,向前迈进的最佳方式是快速启动、运行和迭代。在第一部分中,我们将描述快速电动车充电器的结构,并定义其关键电气规格。


快速直流充电器 – 我们在构建什么?


在电动车生态系统中,直流充电桩提供 "快速 "和 "超快 "充电能力,与较慢的交流充电器形成对比。从本质上讲,电动车充电器将来自电网的交流电转换为适合输送到电动车电池的直流电。直流充电的电源转换是在电动车外("车外")进行的,然后输送到车辆,功率等级从低于50千瓦到大于350千瓦(甚至更高的等级也在开发中)。


更高功率的直流充电桩通常以模块化的方式构建,15至75千瓦(及以上)的功率块堆叠在一个柜子里(图1)。一般来说,直流充电桩的输出电压从150 V到1000 V,涵盖常见的400 V和800 V电动车电池电压。充电桩可针对较高或较低的电压端进行优化。


这种电源模块的结构如下:前端一个带有功率因数校正(PFC)的AC-DC升压转换器,然后是一个DC-DC级,提供在电网和负载(电动车的电池)之间的隔离,并调节输出端电压和电流(还是图1)。该系统也可能是双向的(特别是在低功率时),因此拓扑结构和设计应考虑到这一点。


开发基于碳化硅 (SiC) 的25 kW快速直流充电桩 (第一部分):电动车应用图1. 快速直流充电桩电源模块概览


安森美的团队正在开发一种具有双向能力的25千瓦直流充电器。该系统应涵盖广泛的输出电压范围,能够为400 V和800 V电池的电动车充电,经优化还可用于更高的电压等级。输入电压的额定值为欧盟400伏和美国480伏的三相电网。功率级应在500 V至1000 V电压范围内提供25千瓦。低于500 V时,输出电流将被限制在50 A,降低功率,与直流充电标准如联合充电系统(Combined Charging System ,简称CCS) 或CHAdeMO(图2)的电流曲线相一致。


开发基于碳化硅 (SiC) 的25 kW快速直流充电桩 (第一部分):电动车应用图2. 25 kW 直流充电桩功率级功率和电流曲线。

低于500 V时电流限值在50 A


关于通信端口,该板将为外部接口(电源块、充电器系统控制器、车辆、服务和维护之间)提供隔离的CAN、USB和UART基础架构。总的来说,设计将遵循IEC-61851-1和IEC-61851-23标准中关于电动车充电的准则。下表概述了系统要求。


表:25 kW快速直流充电桩要求

开发基于碳化硅 (SiC) 的25 kW快速直流充电桩 (第一部分):电动车应用

开发流程


我们的团队遵循电源转换硬件开发流程的逻辑。这项工作从定义实际的直流充电桩功率级开始。这是基于应用的要求,我们的案例总结在表格中。这些符合市场的需求,并遵循IEC-68515准则。这些要求有助于团队了解他们需要努力的目标。


第一个可行性研究有助于验证最初的要求和假设。这些将被整合为系统设计的一部分,包括(在本项目的范围内)硬件、软件、热管理和机械设计、原型和验证。所有基本的系统变量和解决方案的大多数临界妥协和权衡都发生在可行性研究期间。


这些任务和子设计是通过多次迭代进行的,其中一个部分的输出和假设被反馈到另一个部分。其中两个主要的设计活动提供了重要的产出,以推进工作:


用SPICE模型进行电源仿真

使用MATLAB和Simulink进行控制仿真


电源仿真对于确认工作电压和电流、损耗、冷却要求以及功率和无源元件的选择等方面的假设至关重要。一旦实施计划准备就绪,就要进行包括功率参数在内的控制仿真,以确认采用该电源设计可以有效地执行控制回路。


在通过电源和控制仿真证实设计后,就获批绘制原理图、布局PCB和制造原型。一旦有了电路板,硬件启动,就可进行功能测试和系统评定。


这是我们将在本系列中讲解的设计过程的简化摘要。从头开始开发一个25千瓦的电动车直流充电桩需要的不仅仅是这些,当我们解决在这过程中遇到的挑战和问题时,将会获得最有价值的收获。


将探讨什么?


在本系列文章的后续部分,我们将进一步专注于一些设计和验证阶段。将解决以下主题:


解决方案概述

三相PFC整流级 

双有源全桥DC-DC级

控制算法、调制方案和反馈

用于SiC电源模块的门极驱动系统

用于800 V总线的辅助电源单元


热管理

开发基于碳化硅 (SiC) 的25 kW快速直流充电桩 (第一部分):电动车应用

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭