当前位置:首页 > 嵌入式 > 嵌入式微处理器
[导读]MOS管数据手册上的相关参数有很多,以MOS管VBZM7N60为例,下面一起来看一看,MOS管的数据手册一般会包含哪些参数吧。极限参数也叫绝对最大额定参数,MOS管在使用过程当中,任何情况下都不能超过下图的这些极限参数,否则MOS管有可能损坏。VDS表示漏极与源极之间所能施加的最...

MOS管数据手册上的相关参数有很多,以MOS管VBZM7N60为例,下面一起来看一看,MOS管的数据手册一般会包含哪些参数吧。


极限参数也叫绝对最大额定参数,MOS管在使用过程当中,任何情况下都不能超过下图的这些极限参数,否则MOS管有可能损坏



VDS表示漏极与源极之间所能施加的最大电压值。VGS表示栅极与源极之间所能施加的最大电压值。ID表示漏极可承受的持续电流值,如果流过的电流超过该值,会引起击穿的风险。IDM表示的是漏源之间可承受的单次脉冲电流强度,如果超过该值,会引起击穿的风险。
EAS表示单脉冲雪崩击穿能量,如果电压过冲值(通常由于漏电流和杂散电感造成)未超过击穿电压,则器件不会发生雪崩击穿,因此也就不需要消散雪崩击穿的能力。EAS标定了器件可以安全吸收反向雪崩击穿能量的高低。
PD表示最大耗散功率,是指MOS性能不变坏时所允许的最大漏源耗散功率,使用时要注意MOS的实际功耗应小于此参数并留有一定余量,此参数一般会随结温的上升而有所减额。(此参数靠不住)
TJ, Tstg,这两个参数标定了器件工作和存储环境所允许的结温区间,应避免超过这个温度,并留有一定余量,如果确保器件工作在这个温度区间内,将极大地延长其工作寿命。
dV/dt反映的是器件承受电压变化速率的能力,越大越好。对系统来说,过高的dv/dt必然会带来高的电压尖峰,较差的EMI特性,不过该变化速率通过系统电路可以进行修正。

热阻表示热传导的难易程度,热阻分为沟道-环境之间的热阻、沟道-封装之间的热阻,热阻越小,表示散热性能越好

△VDS/TJ表示的是漏源击穿电压的温度系数,正温度系数,其值越小,表明稳定性越好。


VGS(th)表示的是MOS的开启电压(阀值电压),对于NMOS,当外加栅极控制电压 VGS超过 VGS(th) 时,NMOS就会导通。


IGSS表示栅极驱动漏电流,越小越好,对系统效率有较小程度的影响。


IDSS表示漏源漏电流,栅极电压 VGS=0 、 VDS 为一定值时的漏源漏流,一般在微安级。


RDS(ON)表示MOS的导通电阻,一般来说导通电阻越小越好,其决定MOS的导通损耗,导通电阻越大损耗越大,MOS温升也越高,在大功率电源中,导通损耗会占MOS整个损耗中较大的比例。


gfs表示正向跨导,反映的是栅极电压对漏源电流控制的能力,gfs过小会导致MOSFET关断速度降低,关断能力减弱,过大会导致关断过快,EMI特性差,同时伴随关断时漏源会产生更大的关断电压尖峰。




Ciss表示输入电容,Ciss=Cgs Cgd,该参数会影响MOS的开关时间,该值越大,同样驱动能力下,开通及关断时间就越慢,开关损耗也就越大。


Coss表示输出电容,Coss=Cds Cgd;Crss表示反向传输电容,Crss=Cgd(米勒电容)。这两项参数对MOSFET关断时间略有影响,其中Cgd会影响到漏极有异常高电压时,传输到MOSFET栅极电压能量的大小,会对雷击测试项目有一定影响。


Qg、Qgs、Qgd、td(on)、tr、td(off)、tf这些参数都是与时间相互关联的参数。开关速度越快对应的优点是开关损耗越小,效率高,温升低,对应的缺点是EMI特性差,MOSFET关断尖峰过高。



IS 、ISM这些参数如果过小,会有电流击穿风险。

VSD、trr如果过大,在桥式或LCC系统中会导致系统损耗过大,温升过高。

Qrr该参数与充电时间成正比,一般越小越好。


输出特性曲线是用来描述MOS管电流和电压之间关系的曲线,特性曲线会受结温的影响,一般数据手册上会列出两种温度下的特性曲线。



根据MOS管的输出特性曲线,取Uds其中的一点,然后用作图的方法,可取得到相应的转移特性曲线从转移特性曲线上可以看出当Uds为某值时,Id与Ugs之间的关系。



MOS的导通电阻跟结温是呈现正温度系数变化的,也就是结温越高,导通电阻越大。MOS数据手册上一般会画出当VGS=10V时的导通电阻随温度变化的曲线。



电容容量值越小,栅极总充电电量QG越小,开关速度越快,开关损耗就越小,开关电源DC/DC变换器等应用,要求较小的QG值。




MOS管一般会有一个寄生二极管,寄生二极管对MOS管有保护的作用,它的特性跟普通的二极管是一样的,也具有正向导通的特性。


最大安全工作区是由一系列(电压,电流)坐标点形成的一个二维区域,MOS管工作时的电压和电流都不能超过该区域,如果超过这个区域就存在危险。





可以看到,MOS管的相关参数其实有很多,其实,在一般应用中,我们主要考虑漏源击穿电压VDS、持续漏极电流ID、导通电阻RDS(ON)、最大耗散功率PD、开启电压VGS(th),开关时间,工作温度范围等参数就可以了。
END

来源:电子电路版权归原作者所有,如有侵权,请联系删除。
嵌入式ARM

扫描二维码,关注更多精彩内容

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭