当前位置:首页 > 单片机 > 8号线攻城狮
[导读]有粉丝问我:“当前乃至未来5-10年,嵌入式开发者还有哪些风口?” 画外音:风口的本质,其实就是一段时间的人才供需不平衡。说白了就是由于行业突变,敏锐的资本快速进入,导致短时间内行业大量扩张,需要大量开发者。 目前的嵌入式开发越来越倾向于智能化,也就是我们所说的智能硬件(硬件软件...

有粉丝问我:“当前乃至未来5-10年,嵌入式开发者还有哪些风口?”

 

画外音:风口的本质,其实就是一段时间的人才供需不平衡。说白了就是由于行业突变,敏锐的资本快速进入,导致短时间内行业大量扩张,需要大量开发者。

 

目前的嵌入式开发越来越倾向于智能化,也就是我们所说的智能硬件(硬件 软件)。


以百度机器人为例,机器人的核心是大脑,即是“数据和算法” ,但机器人大脑想机器人身躯能够像人类一样活动,能说会道,行走自如,那么就必须得依靠嵌入式技术。

 

人工智能虽然红火了这些年,但它真正业务落地的大舞台就是在物联网端侧AI嵌入领域,这里面有非常庞大的应用场景。

 

 

所以,我个人觉得,在物联网和人工智能的促进下,嵌入式在未来的5-10年内会迎来更多的发展机会,一方面嵌入式开发会迎来更多的应用场景,另一方面嵌入式开发的技术体系也会逐渐丰富,从而拓展物联网开发的技术边界。


目前已经有不少AI框架已经逐步支持端侧AI了,比如谷歌的tensorflow lite 和 tensorflow lite micro,以及华为的mindspore lite。芯片厂商ST和NXP 也都推出了部分面向端侧AI的工具和demo。


我本人一直从事嵌入式开发工作,同时也一直关注着嵌入式AI的发展,相信随着5G时代的到来,AI于各行业垂直领域应用具有巨大的潜力

每一个风口下技术人才永远是最难求的一个工种,自从移动互联网来,优秀的开发者身价被翻了几倍之多。
在当下,我个人非常看好嵌入式AI行业在未来的发展潜力,并且不用太焦虑于是否行业已经发展到了瓶颈,我们要做的,首先是巩固自身的实力水平,让自己能在机会来时抓住它。

那么在这样的时代背景下对于从事嵌入式开发的技术人员来说,我给3点建议,来提升自身的职场价值:

 

  • 进一步丰富自身的知识结构,要重点关注人工智能技术;

  • 注重行业经验的积累,嵌入式开发与行业领域有非常多的联系(未来嵌入式开发会逐渐向传统行业覆盖);

  • 关注工业互联网领域的相关技术。


最近整理一套AI入门必备的学习资料,强烈推荐大家学习,作者王小天,拥有8年人工智能领域实战经验,目前就职于BAT之一,AI算法高级技术专家,法国TOP3高校双硕(计算机科学和数学应用双硕士)毕业。


他在人工智能和芯片领域发表10余篇论文,具有深厚的学术背景和丰富的项目及业务落地经验。


工作期间主要负责人工智能业务线CV与NLP相关算法工作,推进人机混合智能、语义分割、机器翻译、虹膜识别等模块的核心算法研究与优化。对图像分类、物体检测、目标跟踪、自动驾驶、计算机体系结构等有深入的研究。


他兼具理论与实战落地经验,深知初学者学习痛点。说实话,这样资历的人,很难得。


(资料内容过多,仅截取部分)



由于工作需要,这份教程我本人也在学习中,虽然已经从事这个行业多年,再看这份教程的时候,仍然能查漏补缺,收获满满,我相信不管是AI入门,还是已经具备了一定的工作经验,这份学习资料,都值得你去认真学习研究


所有以上相关的的内容全部都已经打包好了,汇总成了一份百度云的链接,小贴心之处是怕有的兄弟没有买百度云会员的朋友,能用2MB /S的速度下载,还特地给大家准备了下载工具。


长按下方二维码 2 秒

立即领取


接下来,我详细介绍一下,这份资料该如何学习?


首先,入门AI,掌握一门深度学习框架是必备的生存技能之一


所以教程会从深度学习框架学习入手,带你从零开始训练网络,做到独立搭建和设计卷积神经网络(包括主流分类和检测网络),并进行神经网络的训练和推理(涉及PyTorch、Tensorflow、Caffe、Mxnet等多个主流框架),通过实战让你掌握各种深度学习开源框架。


截取框架学习部分目录大家感受下。



深度学习与神经网络


  • 深度学习简介

  • 基本的深度学习架构

  • 神经元

  • 激活函数详解(sigmoid、tanh、relu等)

  • 感性认识隐藏层

  • 如何定义网络层

  • 损失函数

 

推理和训练


  • 神经网络的推理和训练

  • bp算法详解

  • 归一化

  • Batch Normalization详解

  • 解决过拟合

  • dropout

  • softmax

  • 手推神经网络的训练过程

 

从零开始训练神经网络


  • 使用python从零开始实现神经网络训练

  • 构建神经网络的经验总结

 

深度学习开源框架


  • pytorch

  • tensorflow

  • caffe

  • mxnet

  • keras

  • 优化器详解(GD,SGD,RMSprop等



在计算机视觉技术方面,会系统讲解卷积神经网络、目标检测、OpenCV等,从检测模型教学逐步深入,直到达到CV算法核心能力的提升。


网上相关AI入门资源也很多,但很多技术内容太少,也不成体系,或是写的不全面半懂不懂,重复内容占绝大多数(这里弱弱吐槽百度的搜索结果多样化)。


画外音:同质性的教程有一份就够,注意筛选,不要浪费不必要的时间。


长按下方二维码 2 秒

立即领取



由于微信限制,一个号每天加人上限是100人,太多就被限制了,抓紧扫码领取,先到先得。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭