当前位置:首页 > 厂商动态 > ADI
[导读]本实验旨在研究如何利用ΔVBE概念来产生稳定(对输入电压电平的变化较不敏感)的输出电流。使用反馈来构建在一定的电源电压范围内产生恒定或调节输出电流的电路。

目标

本实验旨在研究如何利用ΔVBE概念来产生稳定(对输入电压电平的变化较不敏感)的输出电流。使用反馈来构建在一定的电源电压范围内产生恒定或调节输出电流的电路。

材料

► ADALM2000主动学习模块

► 无焊试验板

► 一个500 Ω可变电阻、电位计

► 一个100 Ω电阻

► 三个小信号NPN晶体管(2N3904)

► 三个小信号PNP晶体管(2N3906)

说明

在无焊试验板上构建图1所示的电路。蓝色方框表示ADALM2000的连接位置。PNP晶体管Q1、Q2和Q3形成增益为2的电流镜;输出电流是输入电流的2倍。NPN晶体管Q4、Q5和Q6以及可变电阻R1形成电路的ΔVBE部分。电阻R2用于测量随电路上的电压变化(示波器通道1)在电路中流动的电流(示波器通道2)。

学子专区—ADALM2000实验:浮动(2端口)电流源/吸电流

图1.浮动电流源(吸电流连接到负电源)

输出电流通过R1设置。Q4与Q5和Q6的并联组合之间的VBE差(ΔVBE)出现在R1上。PNP镜(Q1、Q2和Q3)的增益为2(假定它们的大小相同)。因此,Q4中的电流是Q5和Q6组合电流的两倍。我们再假定Q4、Q5和Q6的大小也相同,电流密度比为4,VBE差将为:

由于这个等式中的绝对温度项,电流将与绝对温度成正比。在某些情况下,这个特征可能有用,但在其他情况下,可能不适宜。

学子专区—ADALM2000实验:浮动(2端口)电流源/吸电流

图2.浮动电流源(吸电流连接到负电源)试验板电路

硬件设置

试验板电路连接如图2所示。

程序步骤

波形发生器W1配置为三角波,频率为100 Hz,幅度为10 V p-p,偏移为0 V。示波器显示应同时在电压与时间和XY模式中设置,通道1在水平轴上,通道2在垂直轴上。确保在完成并反复检查接线之后,再打开电源。

学子专区—ADALM2000实验:浮动(2端口)电流源/吸电流

图3.浮动电流源(吸电流连接到负电源)示波器XY图示例

学子专区—ADALM2000实验:浮动(2端口)电流源/吸电流

图4.使用理想组件的浮动电流源(吸电流连接到负电源)LTspice XY图示例

证明电路的浮动特性

在图1中,我们以负电源作为电路负极参考。要证明此电路是真正的浮动电流源,按图5所示重新排列试验板并重复测量。

学子专区—ADALM2000实验:浮动(2端口)电流源/吸电流

图5.浮动电流源(源电流连接到正电源)

学子专区—ADALM2000实验:浮动(2端口)电流源/吸电流

图6.浮动电流源(吸电流连接到正电源)试验板电路

硬件设置

试验板电路连接如图6所示。

程序步骤

波形发生器W1配置为三角波,频率为100 Hz,幅度为10 V p-p,偏移为0 V。示波器显示应同时在电压与时间和XY模式中设置,通道1在水平轴上,通道2在垂直轴上。确保在完成并反复检查接线之后,再打开电源。

学子专区—ADALM2000实验:浮动(2端口)电流源/吸电流

图7.浮动电流源(吸电流连接到正电源)XY图

学子专区—ADALM2000实验:浮动(2端口)电流源/吸电流

图8.使用理想组件的浮动电流源(吸电流连接到正电源)LTspice XY图示例

问题:

通过分析电路的LTspice®图,电流源保持相对恒定电流所需的最小电压是多少?

您可以在学子专区博客上找到问题答案。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭