当前位置:首页 > 通信技术 > 通信技术
[导读]基带芯片就是手机中的通信模块,最主要的功能就是负责与移动通信网络的基站进行交流,对上下行的无线信号进行调制、解调、编码、解码工作。5G基带指的是手机中搭载可以解调、解扰、解扩和解码工作的芯片能够支持5G网络,是一款手机能够使用5G网络的关键。

基带芯片就是手机中的通信模块,最主要的功能就是负责与移动通信网络的基站进行交流,对上下行的无线信号进行调制、解调、编码、解码工作。5G基带指的是手机中搭载可以解调、解扰、解扩和解码工作的芯片能够支持5G网络,是一款手机能够使用5G网络的关键。

基带芯片核心部分最主要分为两个部分:射频部分和基带部分。射频部分是将电信号调制成电磁波发送出去或是对接收电磁波进行解调,并且实现基带调制信号的上变频和下变频。基带部分一般是对信号处理,一般由固定功能的DSP提供强大的处理能力,在现代通信设备中,DSP一般被用作语音信号处理、信道编解码、图像处理等等。

5G基带芯片需要同时兼容2G/3G/4G网络,目前国内4G手机所需要支持的模式已经达到6模,到5G时代将达到7模。5G基带芯片产品可分为两种,一种支持6GHz以下频段和毫米波,另一种是5G基带芯片支持6GHz以下频段。

众所周知,目前全球拥有5G基带芯片的厂商,就五家,分别是高通、三星、联发科、华为、紫光展锐,其它的厂商都不行。其中高通、联发科、紫光展锐的5G基带芯片会对外销售,像三星、华为海思的5G基带芯片不对外销售,仅限于自己使用。

2019年,是5G商用的元年,而智能手机被称为5G最适宜的应用之一。在手机厂商竞争背后潜藏的行业发展规律中,核心芯片技术关键作用日益凸显。它决定着手机的最终体验,并牵动用户和市场。而在市场需求升级情况下,各路豪强逐步进入第二代际5G基带芯片竞争。

1月24日,在MWC 2019预沟通会上,华为发布了号称世界第一款单芯多模5G基带巴龙5000。这款多模终端芯片采用7nm工艺,支持5G SA(独立组网)及NSA(非独立组网),向下兼容4G、3G、2G网络,在Sub-6G 200MHz频段实现4.6Gbps下载速率,在毫米波800MHz频段则达到达6.5Gbps。华为当时称,巴龙5000“是全球最强的5G基带”。

在2019年5G开始商用之后,一直以来华为、高通就成为了全球5G基带芯片两强,联发科、三星、紫光展锐都不是高通和华为的对手。不过后来事情慢慢的出现了变化,特别是在2020年9月份之后,华为的芯片就找不到厂商来生产了,麒麟芯片不行,巴龙基带芯片也不行,于是份额慢慢下滑。

按照近日Counterpoint公布的数据,2021年2季度,高通在全球5G基带芯片市场,拿下了55%的份额,绝对的第一,而2020年2季度,份额仅为29%,增长了近90%。而第二名是联发科,份额为30%,而上年同期为11%,相当于增长了200%,而三星与去年同期相比,从18%,变为了10%,下滑了45%左右。至于华为,在2020年2季度,全球5G手机销量中华为手机占了54.8%,也基本上意味着在5G基带市场,华为占了54.8%的份额,毕竟在2020年2季度,只有手机才使用到5G基带,5G手机代表的就是5G基带。

5G市场想象空间巨大,芯片厂商也在摩拳擦掌、心潮涌动。2019年4月16日,是全球5G芯片发展格局变化的重要一天。当日,高通和苹果因专利折腾了近两年的“世纪官司”突然和解。在消息公布几个小时后,英特尔黯然宣布将退出5G智能手机调制解调器业务。

这两大令人震惊的“意外”事件发生后,留给了业界及中外媒体悬而未决的疑问:到底是苹果、高通先和解,然后苹果抛弃了英特尔;还是英特尔自己先放弃,导致苹果酸着鼻子重新找高通?问题的答案或许已不再重要,但众所周知,是一颗5G基带芯片引发了他们的爱恨离散。

不过,苹果与高通和解的代价可能相当高昂。虽然双方都不愿意透露金额,但根据瑞银(UBS)分析师蒂莫西·阿库里(Timothy Arcuri)的估算,苹果将支付给高通50亿至60亿美元的“和解费”。并且苹果还将补足过去两年“分手期”中使用高通技术的专利费。

整体而言,从5G标准的演进来看,按照3GPP组织的时间表,R16标准的完成时间将会在2019年12月,最终的5G完整标准到2020年初才会提交给ITU(国际电信联盟)。由此,自2020年起,5G标准制定完成及商用市场进一步成熟后,5G的爆发效应逐渐显现,届时芯片及终端厂商将开启新一轮竞赛。但对消费者来说,5G终端现在的成熟度还需观察。

目前,在初步形成的华为、高通、三星、紫光展锐和联发科五强格局下,每家厂商的5G基带芯片都有几把刷子,但面对激烈的竞逐及在智能终端、IoT和行业场景应用过程中,不排除有企业会掉队,也不排除有新的玩家出现。此外,尽管华为、高通“双雄”并起,但另外几家也具备影响甚至重塑格局的能力。在5G时代,基带芯片市场最终鹿死谁手,还有待见证。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭